An ultra-short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies.

A nano-scaled coupled-line coupler based on the guidance of surface plasmon-polaritons (SPPs) is proposed, designed and simulated at optical frequencies. The coupler comprises layered dielectric materials and silver, which serve as two stacked nano-transmission lines to achieve broadside coupling. The key property of this coupler is that it operates based on the principle of contra-directional coupling between a forward and a backward wave giving rise to supermodes that are characterized by complex-conjugate eigenvalues (even when the materials are assumed lossless). The resulting exponential attenuation along the coupler leads to dramatically reduced coupling lengths compared to previously reported co-directional SPP couplers (e.g. from millimeters to submicrons). The effect of material losses and finite coupler width are also analyzed.