Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data‐Poor Regions

Water resources management (WRM) for sustainable development presents many challenges in areas with sparse in situ monitoring networks. The exponential growth of satellite based information over the past decade provides unprecedented opportunities to support and improve WRM. Furthermore, traditional barriers to the access and usage of satellite data are lowering as technological innovations provide opportunities to manage and deliver this wealth of information to a wider audience. We review data needs for WRM and the role that satellite remote sensing can play to fill gaps and enhance WRM, focusing on the Latin American and Caribbean as an example of a region with potential to further develop its resources and mitigate the impacts of hydrological hazards. We review the state-of-the-art for relevant variables, current satellite missions, and products, how they are being used currently by national agencies across the Latin American and Caribbean region, and the challenges to improving their utility. We discuss the potential of recently launched, upcoming, and proposed missions that are likely to further enhance and transform assessment and monitoring of water resources. Ongoing challenges of accuracy, sampling, and continuity still need to be addressed, and further challenges related to the massive amounts of new data need to be overcome to best leverage the utility of satellite based information for improving WRM.

[1]  D. Lobell,et al.  Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence , 2016, Global change biology.

[2]  M. Kummu,et al.  Water stress in global transboundary river basins: significance of upstream water use on downstream stress , 2016 .

[3]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[4]  Niko E. C. Verhoest,et al.  A review of spatial downscaling of satellite remotely sensed soil moisture , 2017 .

[5]  Jeroen C. J. H. Aerts,et al.  Changing mechanism of global water scarcity events: Impacts of socioeconomic changes and inter-annual hydro-climatic variability , 2015 .

[6]  Hyongki Lee,et al.  Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools , 2017, Environmental Monitoring and Assessment.

[7]  Martha C. Anderson,et al.  Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States , 2011 .

[8]  L. García,et al.  Earth observation for water resources management : current use and future opportunities for the water sector , 2016 .

[9]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms , 2015 .

[10]  Yi Y. Liu,et al.  ESA CCI Soil Moisture for improved Earth system understanding : State-of-the art and future directions , 2017 .

[11]  Jiří Horák,et al.  Web services for distributed and interoperable hydro-information systems , 2007 .

[12]  P. Berry,et al.  Global inland water monitoring from multi‐mission altimetry , 2005 .

[13]  G. Mariéthoz,et al.  Demonstration of a geostatistical approach to physically consistent downscaling of climate modeling simulations , 2013 .

[14]  Joshua B. Fisher,et al.  Measuring water availability with limited ground data: assessing the feasibility of an entirely remote‐sensing‐based hydrologic budget of the Rufiji Basin, Tanzania, using TRMM, GRACE, MODIS, SRB, and AIRS , 2014 .

[15]  J. Willis,et al.  The OSTM/Jason-2 Mission , 2010 .

[16]  Martha C. Anderson,et al.  Microwave implementation of two-source energy balance approach for estimating evapotranspiration. , 2017, Hydrology and earth system sciences.

[17]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[18]  Edward G. Josberger,et al.  A passive microwave snow depth algorithm with a proxy for snow metamorphism , 2002 .

[19]  C. Birkett,et al.  Radar altimetry: A new concept in monitoring lake level changes , 1994 .

[20]  E. Wood,et al.  A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security , 2014 .

[21]  B. Ramsay,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/hyp.6720 Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS) † , 2022 .

[22]  M. Puma,et al.  Groundwater depletion embedded in international food trade , 2017, Nature.

[23]  A. Sahoo,et al.  Improving soil moisture retrievals from a physically-based radiative transfer model , 2014 .

[24]  R. Koster,et al.  Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) and the Scanning Multichannel Microwave Radiometer (SMMR) , 2007 .

[25]  Bertrand Lubac,et al.  Toward Sentinel-2 High Resolution Remote Sensing of Suspended Particulate Matter in Very Turbid Waters: SPOT4 (Take5) Experiment in the Loire and Gironde Estuaries , 2015, Remote. Sens..

[26]  Stefania Matteoli,et al.  The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[27]  Yi Y. Liu,et al.  Trend-preserving blending of passive and active microwave soil moisture retrievals , 2012 .

[28]  K. Thonicke,et al.  Climate change impacts in Latin America and the Caribbean and their implications for development , 2017, Regional Environmental Change.

[29]  Aleix Serrat Capdevila,et al.  Mainstreaming the use of remote sensing data and applications in operational contexts , 2018 .

[30]  R. Vose,et al.  An Overview of the Global Historical Climatology Network-Daily Database , 2012 .

[31]  Martha C. Anderson,et al.  Towards an integrated soil moisture drought monitor for East Africa , 2012 .

[32]  Michael A. Goldstein,et al.  Water and life from snow: A trillion dollar science question , 2017 .

[33]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[34]  Eric F. Wood,et al.  Multi‐model, multi‐sensor estimates of global evapotranspiration: climatology, uncertainties and trends , 2011 .

[35]  P. Houser,et al.  A Climate Data Record (CDR) for the global terrestrial water budget: 1984–2010 , 2017 .

[36]  Peter John Huybers,et al.  Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures , 2016 .

[37]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[38]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .

[39]  M. Rodell,et al.  Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model , 2016 .

[40]  Martha C. Anderson,et al.  Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources , 2012 .

[41]  C. Ringler,et al.  The Role of Latin America’s Land and Water Resources for Global Food Security: Environmental Trade-Offs of Future Food Production Pathways , 2015, PLoS ONE.

[42]  D. Loucks Sustainable Water Resources Management , 2000 .

[43]  Hao Liu,et al.  Prelminary design of water cycle observation mission (WCOM) , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[44]  Faisal Hossain,et al.  An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope , 2016 .

[45]  M. Mccabe,et al.  Closing the terrestrial water budget from satellite remote sensing , 2009 .

[46]  Wade T. Crow,et al.  Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture , 2011 .

[47]  Aaron T. Wolf,et al.  Conflict and cooperation along international waterways , 1998 .

[48]  Jan G. P. W. Clevers,et al.  Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[49]  P. Moth,et al.  VIIRS Data and Data Access at the NASA National Snow and Ice Data Center Distributed Active Archive Center , 2017 .

[50]  G. Huffman,et al.  The TRMM Multi-Satellite Precipitation Analysis (TMPA) , 2010 .

[51]  Frank Flechtner,et al.  What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? , 2016, Surveys in Geophysics.

[52]  E. Wood,et al.  Development of a High-Resolution Gridded Daily Meteorological Dataset over Sub-Saharan Africa: Spatial Analysis of Trends in Climate Extremes , 2014 .

[53]  O. Batelaan,et al.  Estimation of GRACE water storage components by temporal decomposition. , 2017 .

[54]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[55]  H. Madsen,et al.  Assimilation of SMOS‐derived soil moisture in a fully integrated hydrological and soil‐vegetation‐atmosphere transfer model in Western Denmark , 2014 .

[56]  Amaury Tilmant,et al.  Impact of the Syrian refugee crisis on land use and transboundary freshwater resources , 2016, Proceedings of the National Academy of Sciences.

[57]  Noah P. Molotch,et al.  Real‐time estimation of snow water equivalent in the Upper Colorado River Basin using MODIS‐based SWE Reconstructions and SNOTEL data , 2016 .

[58]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[59]  G. Raga,et al.  Pollution and its Impacts on the South American Cryosphere , 2015 .

[60]  D. Hall,et al.  Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data , 1995 .

[61]  J. C. Barnes,et al.  Snow cover distribution as mapped from satellite photography , 1968 .

[62]  Riko Oki,et al.  International Global Precipitation Measurement (GPM) Program and Mission: An Overview , 2007 .

[63]  R. Green,et al.  An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities , 2015 .

[64]  Matthew Rodell,et al.  Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region , 2013, Water resources research.

[65]  D. Lettenmaier,et al.  Global monitoring of large reservoir storage from satellite remote sensing , 2011 .

[66]  Neal Lott,et al.  The Integrated Surface Database: Recent Developments and Partnerships , 2011 .

[67]  Jérôme Benveniste,et al.  THE ENVISAT RADAR ALTIMETER SYSTEM (RA-2) , 1999 .

[68]  Yoann Malbéteau,et al.  Surface Freshwater Storage Variations in the Orinoco Floodplains Using Multi-Satellite Observations , 2014, Remote. Sens..

[69]  Jaap Schellekens,et al.  MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data , 2016 .

[70]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[71]  D. Baldocchi,et al.  Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites , 2008 .

[72]  Emanuele Santi,et al.  Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation , 2013 .

[73]  Gilles Belaud,et al.  SWOT data assimilation for operational reservoir management on the upper Niger River Basin , 2014 .

[74]  A. Barnston,et al.  Skill of Real-Time Seasonal ENSO Model Predictions During 2002–11: Is Our Capability Increasing? , 2012 .

[75]  W. Wagner,et al.  Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates. , 2017, Geophysical research letters.

[76]  D. Lettenmaier,et al.  The SWOT Mission and Its Capabilities for Land Hydrology , 2016, Surveys in Geophysics.

[77]  Juan B. Valdés,et al.  Water Management Applications for Satellite Precipitation Products: Synthesis and Recommendations , 2014 .

[78]  J. Pekel,et al.  High-resolution mapping of global surface water and its long-term changes , 2016, Nature.

[79]  T. Barnett,et al.  Potential impacts of a warming climate on water availability in snow-dominated regions , 2005, Nature.

[80]  Justin L. Huntington,et al.  Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding , 2017 .

[81]  E. Wood,et al.  Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling , 2006 .

[82]  F. Pappenberger,et al.  Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling , 2017 .

[83]  F. Landerer,et al.  Emerging trends in global freshwater availability , 2018, Nature.

[84]  Thomas Huld,et al.  Extensive validation of CM SAF surface radiation products over Europe , 2017, Remote sensing of environment.

[85]  Yu Zhang,et al.  On Creating Global Gridded Terrestrial Water Budget Estimates from Satellite Remote Sensing , 2016, Surveys in Geophysics.

[86]  Qiuhong Tang,et al.  Estimating the water budget of major US river basins via remote sensing , 2010 .

[87]  R. Khanbilvardi,et al.  Diagnosing Water Variations Within The Amazon Basin Using Satellite Data , 2011 .

[88]  G. Liston,et al.  The Andes Cordillera. Part I: snow distribution, properties, and trends (1979–2014) , 2017 .

[89]  Martha C. Anderson,et al.  A data fusion approach for mapping daily evapotranspiration at field scale , 2013 .

[90]  Li Fang,et al.  NOaa Soil Moisture Operational Product System (SMOPS) and its validations , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[91]  Kuolin Hsu,et al.  Bias adjustment of satellite‐based precipitation estimation using gauge observations: A case study in Chile , 2016 .

[92]  Arun Kumar,et al.  Understanding Prediction Skill of Seasonal Mean Precipitation over the Tropics , 2013 .

[93]  A. Robock,et al.  The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements , 2011 .

[94]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[95]  J. Dozier,et al.  Inroads of remote sensing into hydrologic science during the WRR era , 2015 .

[96]  B. Scanlon,et al.  Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites , 2014 .

[97]  R. Jeu,et al.  Global canopy interception from satellite observations , 2010 .

[98]  Huug van den Dool,et al.  Climate Prediction Center global monthly soil moisture data set at 0.5 resolution for 1948 to present , 2004 .

[99]  Michael Durand,et al.  Assessing the potential global extent of SWOT river discharge observations , 2014 .

[100]  Yi Y. Liu,et al.  Global long‐term passive microwave satellite‐based retrievals of vegetation optical depth , 2011 .

[101]  Francesco Serinaldi,et al.  A Blueprint for Full Collective Flood Risk Estimation: Demonstration for European River Flooding , 2016, Risk analysis : an official publication of the Society for Risk Analysis.

[102]  P. Mell,et al.  The NIST Definition of Cloud Computing , 2011 .

[103]  Z. Su The Surface Energy Balance System ( SEBS ) for estimation of turbulent heat fluxes , 2002 .

[104]  Arnejan van Loenen,et al.  Harvesting Social Media for Generation of Near Real-time Flood Maps☆ , 2016 .

[105]  Jian Peng,et al.  Recent Advances in Soil Moisture Estimation from Remote Sensing , 2017 .

[106]  A. Sahoo,et al.  Multisource estimation of long-term terrestrial water budget for major global river basins , 2012 .

[107]  M. S. Moran,et al.  Single- and Dual-Source Modeling of Surface Energy Fluxes with Radiometric Surface Temperature , 1996 .

[108]  Philip M. Benson,et al.  Laboratory simulations of fluid/gas induced micro-earthquakes: application to volcano seismology , 2014, Front. Earth Sci..

[109]  Qiuhong Tang,et al.  Hydrological monitoring and seasonal forecasting: Progress and perspectives , 2016, Journal of Geographical Sciences.

[110]  J. Key,et al.  Snow and ice products from Suomi NPP VIIRS , 2013 .

[111]  Compton J. Tucker,et al.  A Non-Stationary 1981-2012 AVHRR NDVI3g Time Series , 2014, Remote. Sens..

[112]  J. Norman,et al.  Remote sensing of surface energy fluxes at 101‐m pixel resolutions , 2003 .

[113]  Harald Kunstmann,et al.  The Hydrological Cycle in Three State-of-the-Art Reanalyses: Intercomparison and Performance Analysis , 2012 .

[114]  J. Thielen,et al.  The European Flood Alert System – Part 1: Concept and development , 2008 .

[115]  Simon J. Hook,et al.  ECOSTRESS, A NASA Earth-Ventures Instrument for studying links between the water cycle and plant health over the diurnal cycle , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[116]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[117]  H. Gupta,et al.  Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall–runoff model , 2016 .

[118]  Luca Brocca,et al.  Assimilation of Surface- and Root-Zone ASCAT Soil Moisture Products Into Rainfall–Runoff Modeling , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[119]  Jeffrey P. Walker,et al.  Upscaling sparse ground‐based soil moisture observations for the validation of coarse‐resolution satellite soil moisture products , 2012 .

[120]  Thomas H. Painter,et al.  Interpretation of snow properties from imaging spectrometry , 2009 .

[121]  J. Sheffield,et al.  Spatial downscaling of precipitation using adaptable random forests , 2016 .

[122]  Prasanna H. Gowda,et al.  Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach , 2013 .

[123]  E. Wood,et al.  Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations , 2008 .

[124]  Patrick Hostert,et al.  The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation , 2015, Remote. Sens..

[125]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[126]  Un Desa Transforming our world : The 2030 Agenda for Sustainable Development , 2016 .

[127]  S. Sorooshian,et al.  Merging high‐resolution satellite‐based precipitation fields and point‐scale rain gauge measurements—A case study in Chile , 2017 .

[128]  C. Frankenberg,et al.  New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity , 2011, Geophysical Research Letters.

[129]  J. Michaelsen,et al.  The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes , 2015, Scientific Data.

[130]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets , 2015 .

[131]  Mekonnen Gebremichael,et al.  Upstream satellite remote sensing for river discharge forecasting: Application to major rivers in South Asia , 2013 .

[132]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[133]  W Kloppmann,et al.  The Water Crisis in the Gaza Strip: Prospects for Resolution , 2005, Ground water.

[134]  Christian Hergarten,et al.  Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development , 2014, Front. Earth Sci..

[135]  Ezio Todini,et al.  Flood Forecasting and Decision Making in the new Millennium. Where are We? , 2017, Water Resources Management.

[136]  Marc P. Armstrong,et al.  Processing Remote-Sensing Data in Cloud Computing Environments , 2018 .

[137]  M. Fay,et al.  Rethinking Infrastructure in Latin America and the Caribbean: Spending Better to Achieve More , 2017 .

[138]  S. Calmant,et al.  Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon , 2012 .

[139]  Luigi J. Renzullo,et al.  Water resource monitoring systems and the role of satellite observations , 2011 .

[140]  M. Rodell,et al.  Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin , 2008 .

[141]  E. O’Connell,et al.  Towards Adaptation of Water Resource Systems to Climatic and Socio-Economic Change , 2017, Water Resources Management.

[142]  N. Verhoest,et al.  GLEAM v3: satellite-based land evaporation and root-zone soil moisture , 2016 .

[143]  Shan Gao,et al.  Validation Analysis of SMAP and AMSR2 Soil Moisture Products over the United States Using Ground-Based Measurements , 2017, Remote. Sens..

[144]  Eric F. Wood,et al.  Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA , 2010 .

[145]  Faisal Hossain,et al.  Forecasting transboundary river water elevations from space , 2011 .

[146]  E. Wood,et al.  Seasonal Forecasting of Global Hydrologic Extremes: System Development and Evaluation over GEWEX Basins , 2015 .

[147]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[148]  M. Mccabe,et al.  Multi-site evaluation of terrestrial evaporation models using FLUXNET data , 2014 .

[149]  A. Sahoo,et al.  Reconciling the global terrestrial water budget using satellite remote sensing , 2011 .

[150]  E. J. Christensen,et al.  TOPEX/POSEIDON mission overview , 1994 .

[151]  S. Kanae,et al.  Global flood risk under climate change , 2013 .

[152]  Shihyan Lee,et al.  A review of global satellite-derived snow products , 2012 .

[153]  Wade T. Crow,et al.  Improving Streamflow Prediction Using Remotely-Sensed Soil Moisture and Snow Depth , 2016, Remote. Sens..

[154]  Hanqiu Xu Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery , 2006 .

[155]  Jiancheng Shi,et al.  The Future of Earth Observation in Hydrology. , 2017, Hydrology and earth system sciences.

[156]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[157]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[158]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[159]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[160]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[161]  P. Jarvis The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field , 1976 .

[162]  R. Lunetta,et al.  Barriers to adopting satellite remote sensing for water quality management , 2013 .

[163]  Adam A. Scaife,et al.  Skillful long‐range prediction of European and North American winters , 2014 .

[164]  Jürgen Vogt,et al.  TOWARD GLOBAL DROUGHT EARLY WARNING CAPABILITY Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting , 2013 .

[165]  Eric F. Wood,et al.  Development and Analysis of a Long-Term, Global, Terrestrial Land Surface Temperature Dataset Based on HIRS Satellite Retrievals , 2016 .

[166]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation , 2007 .

[167]  R. Jeu,et al.  Multisensor historical climatology of satellite‐derived global land surface moisture , 2008 .

[168]  Tomoaki Miura,et al.  An initial assessment of Suomi NPP VIIRS vegetation index EDR , 2013 .

[169]  David Grey,et al.  Sink or Swim? Water security for growth and development , 2007 .

[170]  M. Svoboda,et al.  Handbook of Drought Indicators and Indices , 2016 .

[171]  Arnaud Mialon,et al.  The SMOS Soil Moisture Retrieval Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[172]  Kelly K. Caylor,et al.  Photosynthetic seasonality of global tropical forests constrained by hydroclimate , 2015 .

[173]  Marco Tedesco,et al.  A New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures , 2016, Remote. Sens..