A Roadmap for 3D Metal Aerogels: Materials Design and Application Attempts

Summary Armed with merits of the metals (e.g., electrical conductivity, catalytic activity, and plasmonic properties) and aerogels (e.g., monolithic structure, porous network, and large specific surface area), metal aerogels (MAs) have stood out as a new class of porous materials in the last decade. With unparalleled potential in electrocatalysis, plasmonics, and sensing, they are envisaged to revolutionize the energy- and detection-related application fields. However, MA development is severely retarded by the lack of a sufficient material basis. Suffering from the ambiguous understanding of formation mechanisms, big challenges remain for tailoring MAs for task-specific applications. By surveying state-of-the-art developments, this review strives to summarize design principles and arouse interest in broad scientific communities. Moreover, critical challenges and opportunities are highlighted to provide a research roadmap for this young yet promising field.

[1]  Indika U. Arachchige,et al.  Oxidation-induced self-assembly of Ag nanoshells into transparent and opaque Ag hydrogels and aerogels. , 2014, Journal of the American Chemical Society.

[2]  Dexin Yang,et al.  Highly Efficient Electroreduction of CO2 to Methanol on Palladium-Copper Bimetallic Aerogels. , 2018, Angewandte Chemie.

[3]  Hongxing Xu,et al.  Plasmon-Driven Catalysis on Molecules and Nanomaterials. , 2019, Accounts of chemical research.

[4]  M. Engelhard,et al.  Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances , 2017 .

[5]  A. Eychmüller,et al.  Tailoring the Morphology and Fractal Dimension of 2D Mesh‐like Gold Gels , 2020, Angewandte Chemie.

[6]  M. Dresselhaus,et al.  A facile route for 3D aerogels from nanostructured 1D and 2D materials , 2012, Scientific Reports.

[7]  R. Hübner,et al.  Self-Supporting Hierarchical Porous PtAg Alloy Nanotubular Aerogels as Highly Active and Durable Electrocatalysts , 2016 .

[8]  Zhongfan Liu,et al.  CMP Aerogels: Ultrahigh‐Surface‐Area Carbon‐Based Monolithic Materials with Superb Sorption Performance , 2014, Advanced materials.

[9]  Lim Wei Yap,et al.  Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties , 2013 .

[10]  T. Yi,et al.  Density controlled oil uptake and beyond: from carbon nanotubes to graphene nanoribbon aerogels , 2015 .

[11]  Martin R. Lohe,et al.  Metal-organic framework (MOF) aerogels with high micro- and macroporosity. , 2009, Chemical communications.

[12]  Jun Shen,et al.  Freestanding titanium metallic aerogel , 2016 .

[13]  A. Talib,et al.  Aerogels in Aerospace: An Overview , 2013 .

[14]  L. Carrette,et al.  Fuel Cells - Fundamentals and Applications , 2001 .

[15]  Fuyi Chen,et al.  Nanoalloying effects on the catalytic activity of the formate oxidation reaction over AgPd and AgCuPd aerogels , 2019, Journal of Materials Chemistry A.

[16]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[17]  Lawrence W. Hrubesh,et al.  New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors , 2001 .

[18]  S. Son,et al.  Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. , 2006, Journal of the American Chemical Society.

[19]  Yue Hu,et al.  Emerging Noble Metal Aerogels: State of the Art and a Look Forward , 2019, Matter.

[20]  Guihua Yu,et al.  Inorganic Gel-Derived Metallic Frameworks Enabling High-Performance Silicon Anodes. , 2019, Nano letters.

[21]  Stephen Mann,et al.  Dextran templating for the synthesis of metallic and metal oxide sponges , 2003, Nature materials.

[22]  T. Inoué,et al.  A new drying method of biological specimens for scanning electron microscopy: the t-butyl alcohol freeze-drying method. , 1988, Archives of histology and cytology.

[23]  Michael F. Ashby,et al.  Metal foams: A survey , 2003 .

[24]  M. Colombo,et al.  Versatile Aerogel Fabrication by Freezing and Subsequent Freeze-Drying of Colloidal Nanoparticle Solutions. , 2016, Angewandte Chemie.

[25]  Liang Xu,et al.  Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating. , 2014, Angewandte Chemie.

[26]  K. Sandhage,et al.  Freestanding monolithic silicon aerogels , 2012 .

[27]  Fang Qian,et al.  Ultralight Conductive Silver Nanowire Aerogels. , 2017, Nano letters.

[28]  Yu Fang,et al.  A Versatile Strategy for Tailoring Noble Metal Supramolecular Gels/Aerogels and Their Application in Hydrogen Evolution , 2019, ACS Applied Nano Materials.

[29]  S. Kucheyev,et al.  Ultra-low-density silver aerogels via freeze-substitution , 2018, APL Materials.

[30]  R. Hübner,et al.  Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction. , 2018, Angewandte Chemie.

[31]  C. Sotiriou-Leventis,et al.  Smelting in the age of nano: iron aerogels , 2009 .

[32]  P. Gennes,et al.  Statistics of branching and hairpin helices for the dAT copolymer , 1968, Biopolymers.

[33]  T. Baumann,et al.  Ultralow Density, Monolithic WS2, MoS2, and MoS2/Graphene Aerogels. , 2015, ACS nano.

[34]  N. Zhang,et al.  Macroscopic Carbon Nanotube-based 3D Monoliths. , 2015, Small.

[35]  A. Farghaly,et al.  Shape Controlled Synthesis of Au/Ag/Pd Nanoalloys and Their Oxidation-Induced Self-Assembly into Electrocatalytically Active Aerogel Monoliths , 2017 .

[36]  Cheng-Chih Hsu,et al.  Rapid self-healing hydrogels , 2012, Proceedings of the National Academy of Sciences.

[37]  Wei Liu,et al.  Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts , 2015, Accounts of chemical research.

[38]  S. Kistler,et al.  Coherent Expanded Aerogels and Jellies. , 1931, Nature.

[39]  R. Pekala,et al.  Organic aerogels from the polycondensation of resorcinol with formaldehyde , 1989 .

[40]  Xiaojuan Xu,et al.  Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor. , 2017, ACS applied materials & interfaces.

[41]  Shu Zhen,et al.  Metallic foams: their production, properties and applications , 1983 .

[42]  Wei Liu,et al.  A membraneless glucose/O(2) biofuel cell based on Pd aerogels. , 2014, Chemistry.

[43]  G. Cuniberti,et al.  Multimetallic Hierarchical Aerogels: Shape Engineering of the Building Blocks for Efficient Electrocatalysis , 2017, Advanced materials.

[44]  M. Noroozifar,et al.  Three-dimensional assembly of building blocks for the fabrication of Pd aerogel as a high performance electrocatalyst toward ethanol oxidation , 2018, Electrochimica Acta.

[45]  Wei Liu,et al.  Pt-Ni Aerogels as Unsupported Electrocatalysts for the Oxygen Reduction Reaction , 2016 .

[46]  M. Sawangphruk,et al.  A 3D free-standing lithiophilic silver nanowire aerogel for lithium metal batteries without lithium dendrites and volume expansion: in operando X-ray diffraction. , 2019, Chemical communications.

[47]  Adi Salomon,et al.  Direct Fabrication of 3D Metallic Networks and Their Performance , 2017, Advanced materials.

[48]  B. Adams,et al.  The role of palladium in a hydrogen economy , 2011 .

[49]  A. Fery,et al.  Mechanical Characterization of Self-Supported Noble Metal Gel Monoliths , 2019, The Journal of Physical Chemistry C.

[50]  M. Engelhard,et al.  Nanovoid Incorporated IrxCu Metallic Aerogels for Oxygen Evolution Reaction Catalysis , 2018, ACS Energy Letters.

[51]  Wenlong Cheng,et al.  Fractal Gold Nanoframework for Highly Stretchable Transparent Strain-Insensitive Conductors. , 2018, Nano letters.

[52]  R. Hübner,et al.  High-performance Bismuth-doped Nickel Aerogel Electrocatalyst for Methanol Oxidation Reaction. , 2020, Angewandte Chemie.

[53]  V. Gold Compendium of chemical terminology , 1987 .

[54]  Jing Kong,et al.  Porous Cu Nanowire Aerosponges from One‐Step Assembly and their Applications in Heat Dissipation , 2016, Advanced materials.

[55]  Indika U. Arachchige,et al.  Salt-Mediated Self-Assembly of Metal Nanoshells into Monolithic Aerogel Frameworks , 2013 .

[56]  A. Pierre,et al.  Chemistry of aerogels and their applications. , 2002, Chemical reviews.

[57]  Yue Zhang,et al.  Noncloggingly Sieving Sub-6-nm Nanoparticles of Noble Metals into Conductive Mesoporous Foams with Biological Nanofibrils. , 2019, ACS nano.

[58]  Dayang Wang,et al.  Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion. , 2008, Angewandte Chemie.

[59]  P. Simon,et al.  Hydrogels and aerogels from noble metal nanoparticles. , 2009, Angewandte Chemie.

[60]  Juncheng Liu,et al.  A Facile and Template-Free Method to Prepare Mesoporous Gold Sponge and Its Pore Size Control , 2008 .

[61]  R. Hübner,et al.  Unveiling reductant chemistry in fabricating noble metal aerogels for superior oxygen evolution and ethanol oxidation , 2020, Nature Communications.

[62]  M. Noroozifar,et al.  Controlled organization of building blocks to prepare three-dimensional architecture of Pd–Ag aerogel as a high active electrocatalyst toward formic acid oxidation , 2019, Composites Part B: Engineering.

[63]  T. Baumann,et al.  Gold aerogel monoliths with tunable ultra-low densities. , 2020, Nano letters.

[64]  Jun Li,et al.  3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation through Tunable Poisson's Ratio. , 2017, Small.

[65]  R. Hübner,et al.  Freeze–Thaw‐Promoted Fabrication of Clean and Hierarchically Structured Noble‐Metal Aerogels for Electrocatalysis and Photoelectrocatalysis , 2020, Angewandte Chemie.

[66]  M. Engelhard,et al.  Ultrafine Pd ensembles anchored-Au2Cu aerogels boost ethanol electrooxidation , 2018, Nano Energy.

[67]  A. Eychmüller,et al.  Emerging Hierarchical Aerogels: Self‐Assembly of Metal and Semiconductor Nanocrystals , 2018, Advanced materials.

[68]  Xiaohong Xu,et al.  Low temperature CO oxidation over unsupported nanoporous gold. , 2007, Journal of the American Chemical Society.

[69]  Steven Jones Aerogel: Space exploration applications , 2006 .

[70]  N. Bigall,et al.  Porous Aerogels from Shape-Controlled Metal Nanoparticles Directly from Nonpolar Colloidal Solution , 2017 .

[71]  Thomas Graham,et al.  X. Liquid diffusion applied to analysis , 1861, Philosophical Transactions of the Royal Society of London.

[72]  M. Engelhard,et al.  A Facile Method for Synthesizing Dendritic Core–Shell Structured Ternary Metallic Aerogels and Their Enhanced Electrochemical Performances , 2016 .

[73]  Sung‐Min Choi,et al.  Green Synthesis of High-Purity Mesoporous Gold Sponges Using Self-Assembly of Gold Nanoparticles Induced by Thiolated Poly(ethylene glycol). , 2016, Langmuir : the ACS journal of surfaces and colloids.

[74]  W. Liu,et al.  Homogeneity and elemental distribution in self-assembled bimetallic Pd-Pt aerogels prepared by a spontaneous one-step gelation process. , 2016, Physical chemistry chemical physics : PCCP.

[75]  R. Hübner,et al.  Specific ion effects directed noble metal aerogels: Versatile manipulation for electrocatalysis and beyond , 2019, Science Advances.

[76]  Haibing Xia,et al.  Fabrication of Au aerogels with {110}-rich facets by size-dependent surface reconstruction for enzyme-free glucose detection. , 2019, Journal of materials chemistry. B.

[77]  Congcheng Wang,et al.  Reduction-Induced Decomposition: Spontaneous Formation of Monolithic Nanoporous Metals of Tunable Structural Hierarchy and Porosity , 2018 .

[78]  Jun Shen,et al.  Template confined synthetic strategy for three-dimensional free-standing hierarchical porous nanocrystalline tantalum , 2014 .

[79]  R. Hübner,et al.  Disturbance-Promoted Unconventional and Rapid Fabrication of Self-Healable Noble Metal Gels for (Photo-)Electrocatalysis , 2020, Matter.

[80]  Chengzhou Zhu,et al.  Polydopamine-Capped Bimetallic AuPt Hydrogels Enable Robust Biosensor for Organophosphorus Pesticide Detection. , 2019, Small.

[81]  A. R. Modarresi-Alam,et al.  Shape engineering of palladium aerogels assembled by nanosheets to achieve a high performance electrocatalyst , 2019, Applied Catalysis B: Environmental.

[82]  S. Yalkowsky,et al.  Use of pure t-butanol as a solvent for freeze-drying: a case study. , 2001, International journal of pharmaceutics.

[83]  R. Hübner,et al.  Engineering Self‐Supported Noble Metal Foams Toward Electrocatalysis and Beyond , 2019, Advanced Energy Materials.

[84]  D. Xue,et al.  One-step synthesis of open-cell Ni foams by annealing the Ni2+-based precursor in air , 2012 .

[85]  Fuyi Chen,et al.  Lamellar platinum–rhodium aerogels with superior electrocatalytic performance for both hydrogen oxidation and evolution reaction in alkaline environment , 2019, Journal of Power Sources.

[86]  J. Eckert,et al.  Multimetallic Aerogels by Template-Free Self-Assembly of Au, Ag, Pt, and Pd Nanoparticles , 2014 .

[87]  R. Hübner,et al.  Ligand-Exchange-Mediated Fabrication of Gold Aerogels Containing Different Au(I) Content with Peroxidase-like Behavior , 2019, Chemistry of Materials.

[88]  Yongguang Wang,et al.  Versatile synthesis of high surface area multi-metallic nanosponges allowing control over nanostructure and alloying for catalysis and SERS detection , 2014 .

[89]  Indika U. Arachchige,et al.  Direct Cross-Linking of Au/Ag Alloy Nanoparticles into Monolithic Aerogels for Application in Surface-Enhanced Raman Scattering. , 2016, ACS applied materials & interfaces.

[90]  J. Finkelstein On the scaling of the average multiplicity in hadron-hadron collisions , 1985 .

[91]  Yun Lu,et al.  Elastic, Conductive, Polymeric Hydrogels and Sponges , 2014, Scientific Reports.

[92]  Wei Liu,et al.  Controlling the growth of palladium aerogels with high-performance toward bioelectrocatalytic oxidation of glucose. , 2014, Journal of the American Chemical Society.

[93]  P. Swann,et al.  Electron Metallography of Chemical Attack Upon Some Alloys Susceptible to Stress Corrosion Cracking , 1963 .

[94]  Chengzhou Zhu,et al.  Gold Aerogels: Three-Dimensional Assembly of Nanoparticles and Their Use as Electrocatalytic Interfaces , 2016, ACS nano.

[95]  R. Hübner,et al.  Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligand‐Directed Modulation , 2020, Angewandte Chemie.

[96]  M. Engelhard,et al.  Core–shell PdPb@Pd aerogels with multiply-twinned intermetallic nanostructures: facile synthesis with accelerated gelation kinetics and their enhanced electrocatalytic properties , 2018 .

[97]  C. Sotiriou-Leventis,et al.  The effect of compactness on the carbothermal conversion of interpenetrating metal oxide/resorcinol-formaldehyde nanoparticle networks to porous metals and carbides , 2010 .

[98]  Scott Millard Guinness World Records , 2004 .

[99]  Chao Gao,et al.  Multifunctional, Ultra‐Flyweight, Synergistically Assembled Carbon Aerogels , 2013, Advanced materials.

[100]  Wei Liu,et al.  Modern Inorganic Aerogels. , 2017, Angewandte Chemie.

[101]  S. Steiner,et al.  Nanoporous metal foams. , 2010, Angewandte Chemie.

[102]  Juergen Biener,et al.  Toward digitally controlled catalyst architectures: Hierarchical nanoporous gold via 3D printing , 2018, Science Advances.

[103]  R. Hübner,et al.  Engineering Multimetallic Aerogels for pH‐Universal HER and ORR Electrocatalysis , 2020, Advanced Energy Materials.

[104]  R. Johnston,et al.  In situ high-potential-driven surface restructuring of ternary AgPd-Ptdilute aerogels with record-high performance improvement for formate oxidation electrocatalysis. , 2019, Nanoscale.

[105]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[106]  S. Brock,et al.  Porous Semiconductor Chalcogenide Aerogels , 2005, Science.

[107]  Chengzhou Zhu,et al.  A dopamine-induced Au hydrogel nanozyme for enhanced biomimetic catalysis. , 2019, Chemical communications.

[108]  G. Ramanath,et al.  Templateless room-temperature assembly of nanowire networks from nanoparticles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[109]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[110]  E. Müller,et al.  Unsupported Pt-Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes. , 2017, Angewandte Chemie.

[111]  P. Jain,et al.  Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems , 2007 .

[112]  Pradip B. Sarawade,et al.  High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure , 2007 .

[113]  P. Abellan,et al.  Tunable Low Density Palladium Nanowire Foams , 2017, 1710.05906.

[114]  Joshua P. McClure,et al.  Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels , 2017 .

[115]  L. Hench,et al.  The sol-gel process , 1990 .

[116]  A. C. Marr,et al.  Ionic liquid gel materials: applications in green and sustainable chemistry , 2016 .

[117]  M. Benkovicova,et al.  Mechanism of Surface Alkylation of a Gold Aerogel with Tetra-n-butylstannane-d36: Identification of Byproducts. , 2017, The journal of physical chemistry letters.

[118]  Nikolai Gaponik,et al.  Bimetallic aerogels: high-performance electrocatalysts for the oxygen reduction reaction. , 2013, Angewandte Chemie.

[119]  M. Bäumer,et al.  Catalysis by unsupported skeletal gold catalysts. , 2014, Accounts of chemical research.

[120]  Junhua Song,et al.  Efficient Synthesis of MCu (M = Pd, Pt, and Au) Aerogels with Accelerated Gelation Kinetics and their High Electrocatalytic Activity , 2016, Advanced materials.

[121]  Chengzhou Zhu,et al.  Ternary PtRuCu aerogels for enhanced methanol electrooxidation. , 2019, Nanoscale.

[122]  R. Johnston,et al.  Gold-Copper Aerogels with Intriguing Surface Electronic Modulation as Highly Active and Stable Electrocatalysts for Oxygen Reduction and Borohydride Oxidation. , 2018, ChemSusChem.

[123]  A. Varma,et al.  Controlling Combustion Wave Propagation for Transition Metal/Alloy/Cermet Foam Synthesis , 2008 .

[124]  J. L. Kaschmitter,et al.  The Aerocapacitor: An Electrochemical Double‐Layer Energy‐Storage Device , 1993 .

[125]  H. Möhwald,et al.  Regulating Surface Facets of Metallic Aerogel Electrocatalysts by Size-Dependent Localized Ostwald Ripening. , 2018, ACS applied materials & interfaces.

[126]  M. Noroozifar,et al.  Porous three-dimensional network of Pd–Cu aerogel toward formic acid oxidation , 2018, RSC advances.

[127]  M. Noroozifar,et al.  Palladium aerogel as a high-performance electrocatalyst for ethanol electro-oxidation in alkaline media , 2017 .

[128]  Wei Liu,et al.  High-performance electrocatalysis on palladium aerogels. , 2012, Angewandte Chemie.

[129]  Dan Li,et al.  Biomimetic superelastic graphene-based cellular monoliths , 2012, Nature Communications.

[130]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .

[131]  J. Satcher,et al.  Synthesis and Characterization of Hierarchical Porous Gold Materials , 2006 .

[132]  A. Karma,et al.  Evolution of nanoporosity in dealloying , 2001, Nature.

[133]  Wei Liu,et al.  Function-Led Design of Aerogels: Self-Assembly of Alloyed PdNi Hollow Nanospheres for Efficient Electrocatalysis. , 2015, Angewandte Chemie.

[134]  T. Nicolai,et al.  Diffusion limited cluster aggregation with irreversible slippery bonds , 2008 .

[135]  Arlon J. Hunt,et al.  Ambient-temperature supercritical drying of transparent silica aerogels☆ , 1985 .

[136]  Tianyu Liu,et al.  A silver wire aerogel promotes hydrogen peroxide reduction for fuel cells and electrochemical sensors , 2019, Journal of Materials Chemistry A.