Rational Modification of Ligand‐Binding Preference of Avidin by Circular Permutation and Mutagenesis

Chicken avidin is a key component used in a wide variety of biotechnological applications. Here we present a circularly permuted avidin (cpAvd4→3) that lacks the loop between β‐strands 3 and 4. Importantly, the deletion of the loop has a positive effect on the binding of 4′‐hydroxyazobenzene‐2‐carboxylic acid (HABA) to avidin. To increase the HABA affinity of cpAvd4→3 even further, we mutated asparagine 118 on the bottom of the ligand‐binding pocket to methionine, which simultaneously caused a significant drop in biotin‐binding affinity. The X‐ray structure of cpAvd4→ 3(N118M) allows an understanding of the effect of mutation to biotin‐binding, whereas isothermal titration calorimetry revealed that the relative binding affinity of biotin and HABA had changed by over one billion‐fold between wild‐type avidin and cpAvd4→3(N118M). To demonstrate the versatility of the cpAvd4→3 construct, we have shown that it is possible to link cpAvd4→3 and cpAvd5→4 to form the dual‐chain avidin called dcAvd2. These novel avidins might serve as a basis for the further development of self‐organising nanoscale avidin building blocks.

[1]  Olli H Laitinen,et al.  Design and Construction of Highly Stable, Protease-resistant Chimeric Avidins* , 2005, Journal of Biological Chemistry.

[2]  W. Delano Unraveling hot spots in binding interfaces: progress and challenges. , 2002, Current opinion in structural biology.

[3]  J. Sussman,et al.  The structure of the complex between avidin and the dye, 2‐(4'‐hydroxyazobenzene) benzoic acid (HABA) , 1993, FEBS letters.

[4]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[5]  Rodney Andrews,et al.  Aligned Multiwalled Carbon Nanotube Membranes , 2004, Science.

[6]  C. Cantor,et al.  Engineered single-chain dimeric streptavidins with an unexpected strong preference for biotin-4-fluorescein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[8]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[9]  Seppo Ylä-Herttuala,et al.  Efficient production of active chicken avidin using a bacterial signal peptide in Escherichia coli. , 2004, The Biochemical journal.

[10]  E. Braun,et al.  DNA-Templated Carbon Nanotube Field-Effect Transistor , 2003, Science.

[11]  Susanna Repo,et al.  Binding properties of HABA-type azo derivatives to avidin and avidin-related protein 4. , 2006, Chemistry & biology.

[12]  M. Wilchek,et al.  Sodium dodecyl sulfate‐polyacrylamide gel electrophoretic method for assessing the quaternary state and comparative thermostability of avidin and streptavidin , 1996, Electrophoresis.

[13]  O. Laitinen,et al.  Tetravalent single-chain avidin: from subunits to protein domains via circularly permuted avidins. , 2005, The Biochemical journal.

[14]  Min Zhou,et al.  Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. , 2004, Angewandte Chemie.

[15]  N. Green A SPECTROPHOTOMETRIC ASSAY FOR AVIDIN AND BIOTIN BASED ON BINDING OF DYES BY AVIDIN. , 1965, The Biochemical journal.

[16]  F. J. Wolf,et al.  THE PROPERTIES OF STREPTAVIDIN, A BIOTIN-BINDING PROTEIN PRODUCED BY STREPTOMYCETES. , 1964, Archives of biochemistry and biophysics.

[17]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[18]  S. Hubbard,et al.  Limited proteolysis of native proteins: The interaction between avidin and proteinase K , 1995, Protein science : a publication of the Protein Society.

[19]  O. Laitinen,et al.  Novel Avidin-like Protein from a Root Nodule Symbiotic Bacterium, Bradyrhizobium japonicum* , 2005, Journal of Biological Chemistry.

[20]  T. Steiner Die Wasserstoffbrücke im Festkörper , 2002 .

[21]  O. Laitinen,et al.  Genetically engineered avidins and streptavidins , 2006, Cellular and Molecular Life Sciences CMLS.

[22]  M. Wilchek,et al.  Introduction to avidin-biotin technology. , 1990, Methods in enzymology.

[23]  Dudley H. Williams,et al.  Ligandeninduzierte Bewegungseinschränkung mit Stärkung nichtkovalenter Wechselwirkungen in Rezeptoren und Enzymen: Quelle für Bindungsenergie und katalytische Wirkung , 2004 .

[24]  M. Wilchek,et al.  Ligand Exchange between Proteins , 2002, The Journal of Biological Chemistry.

[25]  M. Wilchek,et al.  Biotin Induces Tetramerization of a Recombinant Monomeric Avidin , 2001, The Journal of Biological Chemistry.

[26]  A Coda,et al.  Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 A resolution. , 1993, Journal of molecular biology.

[27]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[28]  R. Stenkamp,et al.  Thermodynamic and structural consequences of flexible loop deletion by circular permutation in the streptavidin‐biotin system , 1998, Protein science : a publication of the Protein Society.

[29]  B. Eipper,et al.  :Posttranslational Modification of Proteins: Expanding Nature's Inventory , 2008 .

[30]  J. W. Edmonds,et al.  Molecular structure of biotin. Results of two independent crystal structure investigations. , 1976, Journal of the American Chemical Society.

[31]  O. Laitinen,et al.  A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo , 2005, Nucleic acids research.

[32]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[33]  Giovanni Paganelli,et al.  Characterization of poultry egg-white avidins and their potential as a tool in pretargeting cancer treatment. , 2003, The Biochemical journal.

[34]  O. Laitinen,et al.  Brave new (strept)avidins in biotechnology. , 2007, Trends in biotechnology.

[35]  O. Laitinen,et al.  Dual‐affinity avidin molecules , 2005, Proteins.

[36]  O. Laitinen,et al.  Chicken Avidin-related Protein 4/5 Shows Superior Thermal Stability when Compared with Avidin while Retaining High Affinity to Biotin* , 2004, Journal of Biological Chemistry.

[37]  F. Diederich,et al.  Enthalpically driven cyclophane-arene inclusion complexation: solvent-dependent calorimetric studies , 1991 .

[38]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[39]  M. Wilchek,et al.  Foreword and introduction to the book (strept)avidin-biotin system. , 1999, Biomolecular engineering.

[40]  D. M. Simons,et al.  Structure-Based Design of Synthetic Azobenzene Ligands for Streptavidin , 1994 .

[41]  K. Airenne,et al.  Rhizavidin from Rhizobium etli: the first natural dimer in the avidin protein family. , 2007, The Biochemical journal.

[42]  Ethan A Merritt,et al.  Cooperative hydrogen bond interactions in the streptavidin–biotin system , 2006, Protein science : a publication of the Protein Society.

[43]  Philip S. Green,et al.  A Practical Protocol for the Reduction of Disulfide Bonds in Proteins Prior to Analysis by Mass Spectrometry , 2001 .

[44]  M. Kulomaa,et al.  Molecular cloning and nucleotide sequence of chicken avidin-related genes 1-5. , 1994, European journal of biochemistry.

[45]  Olli H Laitinen,et al.  Construction of a Dual Chain Pseudotetrameric Chicken Avidin by Combining Two Circularly Permuted Avidins* , 2004, Journal of Biological Chemistry.

[46]  J L Sussman,et al.  Three-dimensional structures of avidin and the avidin-biotin complex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Peter Briggs,et al.  A graphical user interface to the CCP4 program suite. , 2003, Acta crystallographica. Section D, Biological crystallography.

[48]  V S Lamzin,et al.  Automated refinement of protein models. , 1993, Acta crystallographica. Section D, Biological crystallography.

[49]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Translation Functions Biological Crystallography Likelihood-enhanced Fast Translation Functions , 2022 .

[50]  P. Stayton,et al.  Energetic roles of hydrogen bonds at the ureido oxygen binding pocket in the streptavidin-biotin complex. , 1998, Biochemistry.

[51]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[52]  J. L. Smith,et al.  Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Ferrari,et al.  Radioimmunotherapy of brain tumor , 2006, Neurological research.

[54]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[55]  N. Green [74] Spectrophotometric determination of avidin and biotin , 1970 .

[56]  N. Grishin Fold change in evolution of protein structures. , 2001, Journal of structural biology.