Deactivation of cobalt based Fischer―Tropsch catalysts: A review

Abstract To trace the origin of catalyst deactivation is in many cases difficult. It is usually a complex problem where several mechanisms contribute to the loss of activity/selectivity. Low temperature Fischer–Tropsch synthesis (FTS) is a three phase system having a wide range of products and intermediates. Additionally, high partial pressures of steam will arise during reaction. Thus, the chemical environment in the Fischer–Tropsch synthesis reactor encompasses a large number of interacting species which may negatively affect catalytic activity. Furthermore, it is an exothermic reaction and local overheating might occur. Utilization of the produced heat is crucial and the choice of the reactor should be done with respect to the catalyst stability properties. Catalyst deactivation in the Fischer–Tropsch reaction has been a topic of industrial as well as academic interest for many years. The main causes of catalyst deactivation in cobalt based FTS as they appear in the literature are poisoning, re-oxidation of cobalt active sites, formation of surface carbon species, carbidization, surface reconstruction, sintering of cobalt crystallites, metal–support solid state reactions and attrition. The present study focuses on cobalt catalyzed Fischer–Tropsch synthesis. The various deactivation routes are reviewed, categorized and presented with respect to the most recent literature.

[1]  H. Emerich,et al.  In situ X-ray absorption spectroscopic studies at the cobalt K-edge on an Al2O3-supported rhenium-promoted cobalt Fischer-Tropsch catalyst. Comparing reductions in high and low concentration hydrogen , 1998 .

[2]  R. Revel,et al.  In Situ XRD Study of the Influence of Thermal Treatment on the Characteristics and the Catalytic Properties of Cobalt-Based Fischer–Tropsch Catalysts , 2002 .

[3]  Mingsheng Luo,et al.  Fischer–Tropsch synthesis: effect of water on Co/Al2O3 catalysts and XAFS characterization of reoxidation phenomena , 2004 .

[4]  H. Wan,et al.  Partial oxidation of methane to synthesis gas over Co/Ca/Al2O3 catalysts , 2008 .

[5]  C. H. Bartholomew,et al.  Fundamentals of Industrial Catalytic Processes , 2005 .

[6]  Yongqing Zhang,et al.  FISCHER-TROPSCH SYNTHESIS: DEACTIVATION OF NOBLE METAL PROMOTED CO/AL2O3 CATALYSTS , 2002 .

[7]  A. Bell,et al.  An analysis of Fischer-Tropsch synthesis by the bond-order-conservation-Morse-potential approach , 1991 .

[8]  A. Kiennemann,et al.  Effect of Fischer–Tropsch synthesis on the microstructure of Fe–Co-based metal/spinel composite materials , 2001 .

[9]  D. Hercules,et al.  Surface spectroscopic characterization of cobalt-alumina catalysts , 1982 .

[10]  J. Casci,et al.  Fischer–Tropsch catalysis: The basis for an emerging industry with origins in the early 20th Century , 2009 .

[11]  A. Holmen,et al.  The effect of water on cobalt Fischer-Tropsch catalysts studied by steady-state isotopic transient kinetic analysis (SSITKA) , 1997 .

[12]  G. Kiss,et al.  Hydrothermal deactivation of silica-supported cobalt catalysts in Fischer–Tropsch synthesis , 2003 .

[13]  A. Oberlin,et al.  Filamentous growth of carbon through benzene decomposition , 1976 .

[14]  M. C. Zonnevylle,et al.  Studies of the Fischer-Tropsch reaction on Co(0001) , 1991 .

[15]  A. Dalai,et al.  Morphology and deactivation behaviour of Co–Ru/γ‐Al2O3 Fischer–Tropsch synthesis catalyst , 2008 .

[16]  C. H. Bartholomew,et al.  Deactivation by carbon of Ru/Al2O3 during CO hydrogenation , 1983 .

[17]  M. Dry,et al.  Stability of nanocrystals: thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures. , 2005, The journal of physical chemistry. B.

[18]  L. W. Vernon,et al.  The Magnetic Properties of the Cobalt Oxide–Alumina System , 1958 .

[19]  Xingang Li One-step Synthesis of H-beta Zeolite Enwrapped Co/Al2O3 Fischer-Tropsch Catalyst with High Spatial Selectivity , 2009 .

[20]  A. Feller,et al.  Cobalt Cluster Effects in Zirconium Promoted Co/SiO2 Fischer–Tropsch Catalysts , 1999 .

[21]  A. Holmen,et al.  The Effect of Water on the Activity and Selectivity for γ-Alumina Supported Cobalt Fischer–Tropsch Catalysts with Different Pore Sizes , 2006 .

[22]  J. Moulijn,et al.  Temperature-programmed reduction of CoOAI2O3 catalysts , 1985 .

[23]  A. Kiennemann,et al.  Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts , 1999 .

[24]  N. Coville,et al.  The effect of sulfur addition during the preparation of Co/Zn/TiO2 Fischer–Tropsch catalysts , 2008 .

[25]  R. Everson,et al.  Cobalt as an alternative Fischer-Tropsch catalyst to iron for the production of middle distillates , 1997 .

[26]  P. Agrawal Methanation over transition metal catalysts III. Co/Al2O3 in sulfur-poisoning studies , 1981 .

[27]  A. Dalai,et al.  Deactivation behavior of ruthenium promoted Co/γ-Al2O3 catalysts in Fischer–Tropsch synthesis , 2008 .

[28]  G. Jacobs,et al.  Fischer–Tropsch synthesis XAFS: XAFS studies of the effect of water on a Pt-promoted Co/Al2O3 catalyst , 2003 .

[29]  Pio Forzatti,et al.  Fischer–Tropsch synthesis on sulphur poisoned Co/Al2O3 catalyst , 2007 .

[30]  Enrique Iglesia,et al.  Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts , 1997 .

[31]  Gert Jan Kramer,et al.  Fischer–Tropsch technology — from active site to commercial process , 1999 .

[32]  A. Krause,et al.  The long-term performance of Co/SiO2 catalysts in CO hydrogenation , 1996 .

[33]  R. Greegor,et al.  Investigation of supported cobalt and nickel catalysts by x-ray absorption spectroscopy , 1981 .

[34]  Calvin H. Bartholomew,et al.  Sulfur poisoning of cobalt and iron fischer-tropsch catalysts , 1985 .

[35]  A. Datye,et al.  Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under realistic conditions , 2009 .

[36]  A. Dalai,et al.  Fischer–Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts , 2008 .

[37]  H. Pennline,et al.  Process studies with a promoted transition metal―zeolite catalyst , 1984 .

[38]  P. Concepción,et al.  Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts , 2009 .

[39]  D. Goodman,et al.  Fischer-Tropsch synthesis on a model Co/SiO2 catalyst , 2009 .

[40]  H. Schulz,et al.  Construction of the Fischer Tropsch regime with cobalt catalysts , 2002 .

[41]  A. Holmen,et al.  Selectivity and activity changes upon water addition during Fischer-Tropsch synthesis , 2001 .

[42]  P. S. Prasad,et al.  Deactivation by Filamentous Carbon Formation on Co/Aluminum Phosphate during Fischer−Tropsch Synthesis , 2009 .

[43]  J. Goodwin,et al.  Co-Support Compound Formation in Alumina-Supported Cobalt Catalysts , 2001 .

[44]  A. M. van der Kraan,et al.  The Application of Mössbauer Emission Spectroscopy to Industrial Cobalt Based Fischer–Tropsch Catalysts , 2002 .

[45]  A. Holmen,et al.  Study of the deactivation mechanism of Al2O3-supported cobalt Fischer-Tropsch catalysts , 1995 .

[46]  P. Agrawal,et al.  Methanation over transition metal catalysts: II. carbon deactivation of CoAl2O3 in sulfur-free studies , 1981 .

[47]  D. Bazin,et al.  Microstructure of Supported Cobalt Fischer-Tropsch Catalysts , 2009 .

[48]  H. Pennline,et al.  Deactivation and regeneration of a promoted transition-metal-zeolite catalyst , 1986 .

[49]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[50]  Q. Ge,et al.  Adsorption and activation of CO over flat and stepped Co surfaces: a first principles analysis. , 2006, The journal of physical chemistry. B.

[51]  G. Rupprechter,et al.  Spectroscopic studies of surface–gas interactions and catalyst restructuring at ambient pressure: mind the gap! , 2008 .

[52]  Yongqing Zhang,et al.  Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts , 2002 .

[53]  G. Jacobs,et al.  Fischer-Tropsch Synthesis: Influence of Support on the Impact of Co-Fed Water for Cobalt-Based Catalysts , 2007 .

[54]  Burtron H. Davis,et al.  Fischer–Tropsch synthesis: current mechanism and futuristic needs , 2001 .

[55]  G. Jacobs,et al.  Fischer-tropsch synthesis : Kinetics and effect of water for a Co/Al2O3 catalyst , 2007 .

[56]  Yongqing Zhang,et al.  CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts , 2002 .

[57]  Anders Holmen,et al.  Fischer–Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution , 2008 .

[58]  G. Bond,et al.  Catalysis, science and technology , 1983 .

[59]  Anders Holmen,et al.  Study of the effect of water on alumina supported cobalt Fischer–Tropsch catalysts , 1999 .

[60]  S. Bessell Cobalt based Fischer-Tropsch catalyst performance in the presence of nitrogen and carbon dioxide , 1994 .

[61]  Yongqing Zhang,et al.  Fischer–Tropsch synthesis: effect of water on the deactivation of Pt promoted Co/Al2O3 catalysts , 2002 .

[62]  E. Iglesia,et al.  Dispersion, support, and bimetallic effects in Fischer-Tropsch synthesis on cobalt catalysts , 1994 .

[63]  P. Emmett,et al.  Equilibrium Measurements in the Ni3C—Ni—CH4—H2and Co2C—Co—CH4—H2Systems , 1952 .

[64]  Freek Kapteijn,et al.  Catalyst deactivation: is it predictable?: What to do? , 2001 .

[65]  K. Magrini-Bair,et al.  Review of Catalytic Conditioning of Biomass-Derived Syngas , 2009 .

[66]  B. G. Baker,et al.  Characterization of cobalt Fischer-Tropsch catalysts I. Unpromoted cobalt-silica gel catalysts , 1995 .

[67]  J. Dalmon,et al.  Cobalt Fischer-Tropsch synthesis : deactivation by oxidation? , 2007 .

[68]  A. Holmen,et al.  Study of the effect of water on Fischer–Tropsch synthesis over supported cobalt catalysts , 2005 .

[69]  J. Goodwin,et al.  The formation of cobalt silicates on Co/SiO2 under hydrothermal conditions , 1995 .

[70]  B. Jager,et al.  Advances in low temperature Fischer-Tropsch synthesis , 1995 .

[71]  L. Hofer,et al.  Preparation and X-Ray Diffraction Studies of a New Cobalt Carbide1 , 1947 .

[72]  R. Zennaro,et al.  Gas to liquids technologies for natural gas reserves valorization: The Eni experience , 2009 .

[73]  A. Kiennemann,et al.  Study on a cobalt silica catalyst during reduction and Fischer–Tropsch reaction: In situ EXAFS compared to XPS and XRD , 1998 .

[74]  A. Holmen,et al.  Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables , 2007 .

[75]  M. Dry,et al.  Chemical concepts used for engineering purposes , 2004 .

[76]  G. Jacobs,et al.  Fischer–Tropsch synthesis: effect of water on the catalytic properties of a ruthenium promoted Co/TiO2 catalyst , 2002 .

[77]  G. Jacobs,et al.  Fischer-Tropsch Synthesis: Assessment of the Ripening of Cobalt Clusters and Mixing between Co and Ru Promoter via Oxidation-Reduction-Cycles over Lower Co-Loaded Ru-Co/Al2O3 Catalysts , 2008 .

[78]  F. Botes Influences of Water and Syngas Partial Pressure on the Kinetics of a Commercial Alumina-Supported Cobalt Fischer-Tropsch Catalyst , 2009 .

[79]  Wei Chu,et al.  Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. , 2007, Chemical reviews.

[80]  J. Grunwaldt,et al.  Combining XRD and EXAFS with on-Line Catalytic Studies for in situ Characterization of Catalysts , 2002 .

[81]  De Chen,et al.  Microkinetic modelling of the formation of C1 and C2 products in the Fischer–Tropsch synthesis over cobalt catalysts , 2006 .

[82]  A. Jentys,et al.  Estimation of mean size and shape of small metal particles by EXAFS , 1999 .

[83]  Ajay K. Dalai,et al.  Review on Fischer–Tropsch synthesis in supercritical media , 2009 .

[84]  G. Beitel,et al.  A COMBINED IN-SITU PM-RAIRS AND KINETIC STUDY OF SINGLE-CRYSTAL COBALT CATALYSTS UNDER SYNTHESIS GAS AT PRESSURES UP TO 300 MBAR , 1997 .

[85]  B. Weckhuysen,et al.  The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. , 2008, Chemical Society reviews.

[86]  C. Mims,et al.  The Effect of Water on the Cobalt-Catalyzed Fischer–Tropsch Synthesis , 2002 .

[87]  Yuhan Sun,et al.  Effects of methanol co-feeding in F-T synthesis on a silica supported Co-catalyst , 2008 .

[88]  Li Yan,et al.  The formation of Co2C species in activated carbon supported cobalt-based catalysts and its impact on Fischer–Tropsch reaction , 2005 .

[89]  A. Holmen,et al.  Reoxidation and deactivation of supported cobalt Fischer-Tropsch catalysts , 1995 .

[90]  G. Jacobs,et al.  FISCHER-TROPSCH SYNTHESIS: CHARACTERIZATION AND CATALYTIC PROPERTIES OF RHENIUM PROMOTED COBALT ALUMINA CATALYSTS , 2003 .

[91]  M. Dry Chapter 7 – FT catalysts , 2004 .

[92]  F. Habraken,et al.  Formation of Nickel, Cobalt, Copper, and Iron Aluminates fromα- andγ-Alumina-Supported Oxides: A Comparative Study , 1998 .

[93]  B. Rebours,et al.  In situ characterisation of cobalt based Fischer-Tropsch catalysts : A new approach to the active phase , 1998 .

[94]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[95]  M. Kim,et al.  The interplay between sulfur adsorption and carbon deposition on cobalt catalysts , 1993 .

[96]  J. Walmsley,et al.  Characterization of alumina-, silica-, and titania-supported cobalt Fischer–Tropsch catalysts , 2005 .

[97]  H. Schulz Major and Minor Reactions in Fischer–Tropsch Synthesis on Cobalt Catalysts , 2003 .

[98]  R. B. Anderson,et al.  The Role of Bulk Cobalt Carbide in the Fischer—Tropsch Synthesis1 , 1948 .

[99]  H. Topsøe,et al.  Developments in operando studies and in situ characterization of heterogeneous catalysts , 2003 .

[100]  N. V. Peskov,et al.  Formation of Hollow Spheres upon Oxidation of Supported Cobalt Nanoparticles , 2008 .

[101]  M. Yamada,et al.  Investigations on the structural changes of two Co/SiO2 catalysts by performing Fischer–Tropsch synthesis , 2003 .

[102]  M. Wołcyrz,et al.  On Cobalt Silicate Formation during High-Temperature Calcination of Impregnated Cobalt/Silica Catalysts , 1998 .

[103]  K. Jun,et al.  Effect of CO2 in the feed stream on the deactivation of Co/γ-Al2O3 Fischer–Tropsch catalyst , 2008 .

[104]  J. Goodwin,et al.  Effect of zirconia-modified alumina on the properties of Co/γ-Al2O3 catalysts , 2003 .

[105]  M. Mirjalili,et al.  Prediction of nanoparticles’ size-dependent melting temperature using mean coordination number concept , 2008 .

[106]  M. Rønning,et al.  In situ EXAFS study of the bimetallic interaction in a rhenium-promoted alumina-supported cobalt Fischer–Tropsch catalyst , 2001 .

[107]  A. Khodakov,et al.  Fischer-Tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance , 2009 .

[108]  P. J. van Berge,et al.  Preparation and characterisation of spherical Co/SiO2 model catalysts with well-defined nano-sized cobalt crystallites and a comparison of their stability against oxidation with water , 2006 .

[109]  A. Dalai,et al.  Fischer–Tropsch synthesis: Water effects on Co supported on narrow and wide-pore silica , 2005 .

[110]  J. Niemantsverdriet,et al.  In situ surface oxidation study of a planar Co/SiO2/Si(100) model catalyst with nanosized cobalt crystallites under model Fischer-Tropsch synthesis conditions. , 2006, The journal of physical chemistry. B.

[111]  Fischer-Tropsch synthesis: effect of water on activity and selectivity for a cobalt catalyst , 2004 .

[112]  A. Borg,et al.  Formation of the CO-induced (3 × 1) surface structure on Co(112̄0) studied by STM , 1998 .

[113]  Bert M. Weckhuysen,et al.  Determining the active site in a catalytic process: Operando spectroscopy is more than a buzzword , 2003 .

[114]  J. G. Goodwin,et al.  In-Situ XAFS Investigation of K-Promoted Co Catalysts , 1995 .

[115]  C. H. Bartholomew Carbon Deposition in Steam Reforming and Methanation , 1982 .

[116]  G. Kiss,et al.  Ex Situ Transmission Electron Microscopy: A Fixed-Bed Reactor Approach , 2005, Microscopy and Microanalysis.

[117]  P. J. van Berge,et al.  Oxidation of cobalt based Fischer–Tropsch catalysts as a deactivation mechanism , 2000 .

[118]  Diane Hildebrandt,et al.  The effect of sulfur on supported cobalt Fischer–Tropsch catalysts , 1999 .

[119]  M. Hove,et al.  ADSORBATE-INDUCED RESTRUCTURING OF SURFACES , 1989 .

[120]  JianGang Chen,et al.  Study on Deactivation of Co/ZrO2/SiO2 Catalyst For Fischer-Tropsch Synthesis , 2001 .

[121]  Freek Kapteijn,et al.  Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. , 2006, Journal of the American Chemical Society.

[122]  A. Holmen,et al.  Fischer-Tropsch synthesis on cobalt catalysts: the effect of water , 2007 .

[123]  Jingjiang He,et al.  Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas. , 2006, Chemistry.

[124]  Brian C. Stephenson,et al.  Hydrothermal stability of Co/SiO 2 fischer-tropsch synthesis catalysts , 2001 .

[125]  Im Ionel Ciobica,et al.  Intermediates in the formation of graphitic carbon on a flat FCC-Co(111) surface , 2008 .

[126]  Yu‐Wen Chen,et al.  Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts , 1991 .

[127]  P. G. Menon Coke on catalysts-harmful, harmless, invisible and beneficial types , 1990 .

[128]  A. Chaffee,et al.  Sulfur Poisoning of Fischer-Tropsch Synthesis Catalysts in a Fixed-Bed Reactor , 1989 .

[129]  Wei Chu,et al.  Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts , 2007 .

[130]  A. Sault,et al.  Effects of Activation on the Surface Properties of Silica-Supported Cobalt Catalysts , 1995 .

[131]  D. Nicholson,et al.  X-ray Absorption Spectroscopic Studies at the Cobalt K-Edge on a Reduced Al2O3-Supported Rhenium-Promoted Cobalt Fischer−Tropsch Catalyst , 1997 .

[132]  Anders Holmen,et al.  Fischer–Tropsch synthesis over Re-promoted Co supported on Al2O3, SiO2 and TiO2: Effect of water , 2005 .

[133]  Rajamani Krishna,et al.  Modelling of a bubble column slurry reactor for Fischer Tropsch synthesis , 1999 .

[134]  R. Baker,et al.  Catalytic growth of carbon filaments , 1989 .

[135]  H. J. Krebs,et al.  Surface science approach to heterogeneous catalysis: CO hydrogenation on transition metals , 1982 .

[136]  Enrique Iglesia,et al.  An Investigation of the Effects of Water on Rate and Selectivity for the Fischer-Tropsch Synthesis on Cobalt-Based Catalysts , 2002 .

[137]  S. Ihm,et al.  Effect of Carbon Deposits on Carbon Monoxide Hydrogenation over Alumina-Supported Cobalt Catalyst , 1988 .

[138]  Jon Wilson,et al.  Atomic-Scale Restructuring in High-Pressure Catalysis , 1995 .

[139]  A. M. Saib,et al.  Fundamental understanding of deactivation and regeneration of cobalt Fischer-Tropsch synthesis catalysts , 2010 .

[140]  J. Gaube,et al.  The promoter effect of alkali in Fischer-Tropsch iron and cobalt catalysts , 2008 .

[141]  C. H. Bartholomew Mechanisms of catalyst deactivation , 2001 .

[142]  R. Grasselli,et al.  Molecular probes for the mechanism of selective oxidation and ammoxidation catalysis , 1984 .

[143]  J. Goodwin,et al.  Cobalt Aluminate Formation in Alumina-Supported Cobalt Catalysts: Effects of Cobalt Reduction State and Water Vapor , 2003 .

[144]  I. Arčon,et al.  Characterization and Catalytic Behavior of Co/SiO2 Catalysts: Influence of Dispersion in the Fischer–Tropsch Reaction , 2001 .

[145]  R. V. van Santen,et al.  Interaction of graphene with FCC-Co(111). , 2009, Physical chemistry chemical physics : PCCP.

[146]  R. A. Santen,et al.  Adsorbate induced reconstruction of cobalt surfaces , 2008 .

[147]  R. Greegor,et al.  Effect of chemical environment on magnitude of x‐ray absorption resonance at LIII edges. Studies on metallic elements, compounds, and catalysts , 1979 .

[148]  S. Nagakura Study of Metallic Carbides by Electron Diffraction Part IV. Cobalt Carbides , 1961 .

[149]  R. Madon,et al.  Effect of Sulfur on the Fischer-Tropsch Synthesis , 1977 .

[150]  A. Krause,et al.  A novel Co/SiO2 catalyst for hydrogenation , 1998 .

[151]  Jyhfu Lee,et al.  X-Ray absorption spectroscopic study at the cobalt K-edge on the calcination and reduction of the microporous cobalt silicoaluminophosphate catalyst CoSAPO-34 , 1997 .

[152]  J. Geerlings,et al.  Conversion of surface carbidic to subsurface carbon on cobalt (0001): a theoretical study , 1990 .

[153]  G. Jacobs,et al.  Fischer−Tropsch Synthesis: Kinetics and Effect of Water for a Co/SiO2 Catalyst , 2005 .

[154]  Yuhan Sun,et al.  The deactivation of Co/SiO2 catalyst for Fischer–Tropsch synthesis at different ratios of H2 to CO , 2006 .

[155]  A. Cabot,et al.  Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy. , 2009, The journal of physical chemistry. B.

[156]  Yongqing Zhang,et al.  Fischer-Tropsch synthesis: effect of water on the catalytic properties of a Co/SiO2 catalyst , 2002 .

[157]  G. Somorjai,et al.  The effects of promoters in carbon monoxide hydrogenation on cobalt foil model catalysts , 1997 .

[158]  J. Niemantsverdriet,et al.  XANES study of the susceptibility of nano-sized cobalt crystallites to oxidation during realistic Fischer–Tropsch synthesis , 2006 .

[159]  Effect of water on the catalytic properties of supported cobalt Fischer-Tropsch catalysts , 2004 .

[160]  D. Glasser,et al.  Fischer–Tröpsch synthesis over Co/TiO2: Effect of ethanol addition , 2007 .

[161]  Dongguang Wei,et al.  Attrition resistance of cobalt F–T catalysts for slurry bubble column reactor use , 2001 .

[162]  Neil J. Coville,et al.  Effect of boron on the sulfur poisoning of Co/TiO2 Fischer–Tropsch catalysts , 2001 .

[163]  E. Steen,et al.  Fischer‐Tropsch Catalysts for the Biomass‐to‐Liquid (BTL)‐Process , 2008 .

[164]  J. G. Goodwin,et al.  Attrition assessment for slurry bubble column reactor catalysts , 1999 .

[165]  A. Holmen,et al.  Reoxidation of supported cobalt Fischer-Tropsch catalysts , 1997 .

[166]  G. Beitel,et al.  Polarization Modulation Infrared Reflection Absorption Spectroscopy of CO Adsorption on Co(0001) under a High-Pressure Regime , 1996 .