Chemogenetic rectification of the inhibitory tone onto hippocampal neurons reverts autistic-like traits and normalizes local expression of estrogen receptors in the Ambra1+/- mouse model of female autism

[1]  A. Szűcs,et al.  Alterations of the Hippocampal Networks in Valproic Acid-Induced Rat Autism Model , 2022, Frontiers in Neural Circuits.

[2]  Giuliano Iurilli,et al.  Abnormal whisker-dependent behaviors and altered cortico-hippocampal connectivity in Shank3b−/− mice , 2021, Cerebral cortex.

[3]  D. Schiller,et al.  Hippocampal contributions to social and cognitive deficits in autism spectrum disorder , 2021, Trends in Neurosciences.

[4]  R. Ventura,et al.  MicroRNA-34a regulates 5-HT2C expression in dorsal raphe and contributes to the anti-depressant-like effect of fluoxetine , 2021, Neuropharmacology.

[5]  Simon X. Chen,et al.  Delayed motor learning in a 16p11.2 deletion mouse model of autism is rescued by locus coeruleus activation , 2021, Nature Neuroscience.

[6]  N. Mercuri,et al.  Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer’s Disease , 2021, Progress in Neurobiology.

[7]  U. Meyer,et al.  Oral application of clozapine-N-oxide using the micropipette-guided drug administration (MDA) method in mouse DREADD systems , 2021, Lab Animal.

[8]  T. Abel,et al.  Age- and sex-specific fear conditioning deficits in mice lacking Pcdh10, an Autism Associated Gene , 2020, Neurobiology of Learning and Memory.

[9]  OUP accepted manuscript , 2021, Cerebral Cortex.

[10]  Michael J. Castle,et al.  Intersectional targeting of defined neural circuits by adeno‐associated virus vectors , 2020, Journal of neuroscience research.

[11]  K. Thomas,et al.  Neuronal activity increases translocator protein (TSPO) levels , 2020, Molecular Psychiatry.

[12]  H. Zhang,et al.  Targeting inhibitory cerebellar circuitry to alleviate behavioral deficits in a mouse model for studying idiopathic autism , 2020, Neuropsychopharmacology.

[13]  N. Soares,et al.  Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation , 2020, Translational pediatrics.

[14]  A. Guastella,et al.  Executive Function in Autism Spectrum Disorder: History, Theoretical Models, Empirical Findings, and Potential as an Endophenotype , 2019, Front. Psychiatry.

[15]  B. Crespi,et al.  AMBRA1, Autophagy, and the Extreme Male Brain Theory of Autism , 2019, Autism Research and Treatment.

[16]  M. Holahan,et al.  Social Memory and the Role of the Hippocampal CA2 Region , 2019, Front. Behav. Neurosci..

[17]  Hui Lu,et al.  The Medial Prefrontal Cortex in Neurological Diseases. , 2019, Physiological genomics.

[18]  S. Hattar,et al.  Non-invasive Strategies for Chronic Manipulation of DREADD-controlled Neuronal Activity. , 2019, Journal of visualized experiments : JoVE.

[19]  Paula L. Smith,et al.  Gender differences in self-reported camouflaging in autistic and non-autistic adults , 2019, Autism : the international journal of research and practice.

[20]  S. Lammel,et al.  Hot topic in optogenetics: new implications of in vivo tissue heating , 2019, Nature Neuroscience.

[21]  Zhen Yan,et al.  Chemogenetic Activation of Prefrontal Cortex in Shank3-Deficient Mice Ameliorates Social Deficits, NMDAR Hypofunction, and Sgk2 Downregulation , 2019, iScience.

[22]  M. Janahmadi,et al.  Hyperexcitability of hippocampal CA1 pyramidal neurons in male offspring of a rat model of autism spectrum disorder (ASD) induced by prenatal exposure to valproic acid: A possible involvement of Ih channel current , 2019, Brain Research.

[23]  M. D’Amelio,et al.  Neurodevelopmental Disorders: Functional Role of Ambra1 in Autism and Schizophrenia , 2019, Molecular Neurobiology.

[24]  G. McAlonan,et al.  The contribution of [1H] magnetic resonance spectroscopy to the study of excitation-inhibition in autism , 2019, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[25]  M. Velinov Genomic Copy Number Variations in the Autism Clinic—Work in Progress , 2019, Front. Cell. Neurosci..

[26]  Joungmok Kim,et al.  Autophagy: An Essential Degradation Program for Cellular Homeostasis and Life , 2018, Cells.

[27]  Ling Li,et al.  Prenatal Progestin Exposure Is Associated With Autism Spectrum Disorders , 2018, Front. Psychiatry.

[28]  N. Kato,et al.  Association between single nucleotide polymorphisms in estrogen receptor 1/2 genes and symptomatic severity of autism spectrum disorder. , 2018, Research in developmental disabilities.

[29]  Matthew Schafer,et al.  Navigating Social Space , 2018, Neuron.

[30]  D. Schiller,et al.  The social hippocampus , 2018, Hippocampus.

[31]  Jun Xia,et al.  Gamma Oscillation Dysfunction in mPFC Leads to Social Deficits in Neuroligin 3 R451C Knockin Mice , 2018, Neuron.

[32]  Ted Abel,et al.  Sex Differences in Autism Spectrum Disorder: a Review , 2018, Current Psychiatry Reports.

[33]  N. Mercuri,et al.  Ambra1 Shapes Hippocampal Inhibition/Excitation Balance: Role in Neurodevelopmental Disorders , 2018, Molecular Neurobiology.

[34]  T. Abel,et al.  Male-specific deficits in natural reward learning in a mouse model of neurodevelopmental disorders , 2017, Molecular Psychiatry.

[35]  H. Man,et al.  Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity , 2017, Front. Cell. Neurosci..

[36]  J. Sweeney,et al.  Neural Hyperexcitability in Autism Spectrum Disorders , 2017, Brain sciences.

[37]  H. Völzke,et al.  Sexual dimorphism of AMBRA1-related autistic features in human and mouse , 2017, Translational Psychiatry.

[38]  Karl Deisseroth,et al.  Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice , 2017, Science Translational Medicine.

[39]  R. Schwarting,et al.  Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the post‐synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder , 2017, Hippocampus.

[40]  Eunjoon Kim,et al.  Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders , 2017, Biological Psychiatry.

[41]  Lina M. Tran,et al.  Chemogenetic Interrogation of a Brain-wide Fear Memory Network in Mice , 2017, Neuron.

[42]  V. Martínez‐Cerdeño,et al.  Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models , 2017, Developmental neurobiology.

[43]  A. Pillai,et al.  Estrogen Signaling as a Therapeutic Target in Neurodevelopmental Disorders , 2017, The Journal of Pharmacology and Experimental Therapeutics.

[44]  Simon Baron-Cohen,et al.  Quantifying and exploring camouflaging in men and women with autism , 2016, Autism : the international journal of research and practice.

[45]  H. Kim,et al.  Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects , 2016, Molecular Psychiatry.

[46]  D. Werling,et al.  The role of sex-differential biology in risk for autism spectrum disorder , 2016, Biology of Sex Differences.

[47]  Kyle S. Smith,et al.  Dreadds: Use and Application in Behavioral Neuroscience Section 1: Advantages for Behavioral Neuroscience Dreadds Involve the Use of Receptor Proteins Derived from Targeted Mutagenesis of Endogenous G-protein Coupled Receptor , 2022 .

[48]  Torfi Sigurdsson,et al.  Hippocampal-Prefrontal Interactions in Cognition, Behavior and Psychiatric Disease , 2016, Front. Syst. Neurosci..

[49]  E. Rossignol,et al.  Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. , 2016, Progress in brain research.

[50]  J. C. Kim,et al.  Comparative density of CCK- and PV-GABA cells within the cortex and hippocampus , 2015, Front. Neuroanat..

[51]  S. Schiffmann,et al.  Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities , 2015, Translational Psychiatry.

[52]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[53]  C. Eroglu,et al.  Rapid Golgi Analysis Method for Efficient and Unbiased Classification of Dendritic Spines , 2014, PloS one.

[54]  R. Thakkar,et al.  Dysregulation of estrogen receptor beta (ERβ), aromatase (CYP19A1), and ER co-activators in the middle frontal gyrus of autism spectrum disorder subjects , 2014, Molecular Autism.

[55]  K. Hammerschmidt,et al.  Heterozygous Ambra1 Deficiency in Mice: A Genetic Trait with Autism-Like Behavior Restricted to the Female Gender , 2014, Front. Behav. Neurosci..

[56]  S. Siegelbaum,et al.  The hippocampal CA2 region is essential for social memory , 2014, Nature.

[57]  M. Sidor,et al.  Timing matters: using optogenetics to chronically manipulate neural circuitry and rhythms , 2014, Front. Behav. Neurosci..

[58]  Min Goo Lee,et al.  Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function , 2012, Nature.

[59]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[60]  Y. S. Kim,et al.  Prevalence of autism spectrum disorders in a total population sample. , 2011, The American journal of psychiatry.

[61]  Minyi Xu,et al.  Sex Hormones in Autism: Androgens and Estrogens Differentially and Reciprocally Regulate RORA, a Novel Candidate Gene for Autism , 2011, PloS one.

[62]  J. N. Crawley,et al.  Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters , 2011, Genes, brain, and behavior.

[63]  E. Callaway,et al.  Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells , 2010, The Journal of comparative neurology.

[64]  J. Hutsler,et al.  Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders , 2010, Brain Research.

[65]  Charles D. Smith,et al.  Neuronal fiber pathway abnormalities in autism: An initial MRI diffusion tensor tracking study of hippocampo-fusiform and amygdalo-fusiform pathways , 2008, Journal of the International Neuropsychological Society.

[66]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[67]  M. Casanova,et al.  The Neuropathology of Autism , 2007, Brain pathology.

[68]  K. Chowdhury,et al.  A Novel Role for Autophagy in Neurodevelopment , 2007, Autophagy.

[69]  Peter Schwartz,et al.  Ambra1 regulates autophagy and development of the nervous system , 2007, Nature.

[70]  B. Roth,et al.  Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand , 2007, Proceedings of the National Academy of Sciences.

[71]  J C Fiala,et al.  Reconstruct: a free editor for serial section microscopy , 2005, Journal of microscopy.

[72]  Niels Albertsen,et al.  What is the Social ? , 2003 .

[73]  S. O. Mueller,et al.  Estrogen receptors and endocrine diseases: lessons from estrogen receptor knockout mice. , 2001, Current opinion in pharmacology.

[74]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[75]  H. Katsumaru,et al.  GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus , 1987, Brain Research.

[76]  T. Schallert,et al.  Homeostasis and life , 1979 .