Charge screening strategy for domain pattern control in nano-scale ferroelectric systems

[1]  H. Funakubo,et al.  Fabrication of Tetragonal Pb(Zr,Ti)O3 Nanorods by Focused Ion Beam and Characterization of the Domain Structure , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[2]  A. Tagantsev,et al.  Room temperature concurrent formation of ultra-dense arrays of ferroelectric domain walls , 2015 .

[3]  H. Funakubo,et al.  Domain structure of tetragonal Pb(Zr,Ti)O3 nanorods and its size dependence , 2015 .

[4]  H. Funakubo,et al.  Negligible substrate clamping effect on piezoelectric response in (111)-epitaxial tetragonal Pb(Zr, Ti)O3 films , 2015 .

[5]  A. Tagantsev,et al.  Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. , 2015, Nature nanotechnology.

[6]  A. Tagantsev,et al.  Phase transitions associated with competing order parameters in compressively strained SrTiO3 thin films , 2015 .

[7]  O. Sakata,et al.  Fabrication of tetragonal Pb(Zr,Ti)O 3 nanorods by focused ion beam and characterization of the domain structure , 2015 .

[8]  A. Tagantsev,et al.  Suppressed polar distortion with enhanced Curie temperature in in-plane 90°-domain structure of a-axis oriented PbTiO3 Film , 2015 .

[9]  N. Setter,et al.  Post-deposition control of ferroelastic stripe domains and internal electric field by thermal treatment , 2015 .

[10]  B. Wang,et al.  Controllability of Vortex Domain Structure in Ferroelectric Nanodot: Fruitful Domain Patterns and Transformation Paths , 2014, Scientific Reports.

[11]  L. Martin,et al.  Stationary domain wall contribution to enhanced ferroelectric susceptibility , 2014, Nature Communications.

[12]  A. Tagantsev,et al.  Free-electron gas at charged domain walls in insulating BaTiO3 , 2013, Nature Communications.

[13]  James F. Scott,et al.  Domain wall nanoelectronics , 2012 .

[14]  A. Tagantsev,et al.  Size effect in ferroelectrics: Competition between geometrical and crystalline symmetries , 2011 .

[15]  L. Eric Cross,et al.  Domains in Ferroic Crystals and Thin Films , 2010 .

[16]  H. Funakubo,et al.  Crystal structure and electrical property comparisons of epitaxial Pb(Zr,Ti)O3 thick films grown on (100)CaF2 and (100)SrTiO3 substrates , 2009 .

[17]  H. Funakubo,et al.  Domain structure of (100)/(001)-oriented epitaxial PbTiO3 thick films with various volume fraction of (001) orientation grown by metal organic chemical vapor deposition , 2009 .

[18]  K. Saito,et al.  Thick Epitaxial Pb(Zr0.35,Ti0.65)O3 Films Grown on (100)CaF2 Substrates with Polar-Axis-Orientation , 2008 .

[19]  James F. Scott,et al.  Morphological Control of Polar Orientation in Single-Crystal Ferroelectric Nanowires , 2007 .

[20]  S. Venkatesan,et al.  Smallest 90° domains in epitaxial ferroelectric films , 2007, 0706.2487.

[21]  A. Rappe,et al.  Stabilization of monodomain polarization in ultrathin PbTiO3 films. , 2006, Physical review letters.

[22]  Long-qing Chen,et al.  Temperature-strain phase diagram for BaTiO3 thin films , 2006 .

[23]  A Janssens,et al.  Polar domains in lead titanate films under tensile strain. , 2005, Physical review letters.

[24]  J. Ouyang,et al.  Effect of 90° domain movement on the piezoelectric response of patterned PbZr0.2Ti0.8O3∕SrTiO3∕Si heterostructures , 2005 .

[25]  A. Rappe,et al.  Ferroelectricity in ultrathin perovskite films , 2005, cond-mat/0505051.

[26]  S. Shapiro,et al.  Strain phase diagram and domain orientation in SrTiO3 thin films. , 2005, Physical review letters.

[27]  V. Gopalan,et al.  Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.

[28]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[29]  V. Nagarajan,et al.  Finite element modeling of piezoresponse in nanostructured ferroelectric films , 2004 .

[30]  Rainer Waser,et al.  Phase diagrams and physical properties of single-domain epitaxialPb(Zr1−xTix)O3thin films , 2003 .

[31]  Z. Ban,et al.  Phase diagrams and dielectric response of epitaxial barium strontium titanate films: A theoretical analysis , 2002 .

[32]  N. Wakiya,et al.  Preparation of heteroepitaxial Pb(Mg1/3Nb2/3)O3 (PMN) thin film by pulsed laser deposition on Si(001) substrate using La0.5Sr0.5CoO3 (LSCO)/CeO2/YSZ triple buffer , 2001 .

[33]  J. Melngailis,et al.  Scaling of ferroelectric properties in thin films , 1999 .

[34]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[35]  James S. Speck,et al.  Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. III. Interfacial defects and domain misorientations , 1995 .

[36]  James S. Speck,et al.  DOMAIN CONFIGURATIONS DUE TO MULTIPLE MISFIT RELAXATION MECHANISMS IN EPITAXIAL FERROELECTRIC THIN FILMS. I: THEORY , 1994 .

[37]  Leslie E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: Curie constant and sixth-order polarization interaction dielectric stiffness coefficients , 1989 .

[38]  J. Thornton High Rate Thick Film Growth , 1977 .

[39]  J. Furuichi,et al.  Domain Structure of Rochelle Salt and K H 2 P O 4 , 1953 .

[40]  Andrew M Rappe,et al.  Ferroelectric polarization reversal via successive ferroelastic transitions. , 2015, Nature materials.

[41]  Lukasz Nalaskowski,et al.  Theoretical Analysis , 2008, Encyclopedia of GIS.

[42]  J. Melngailis,et al.  Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.