Charge screening strategy for domain pattern control in nano-scale ferroelectric systems
暂无分享,去创建一个
H. Funakubo | N. Setter | O. Sakata | T. Sluka | N. Wakiya | Hidenori Tanaka | Tomoaki Yamada | M. Yoshino | T. Nagasaki | T. Namazu | D. Ito
[1] H. Funakubo,et al. Fabrication of Tetragonal Pb(Zr,Ti)O3 Nanorods by Focused Ion Beam and Characterization of the Domain Structure , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.
[2] A. Tagantsev,et al. Room temperature concurrent formation of ultra-dense arrays of ferroelectric domain walls , 2015 .
[3] H. Funakubo,et al. Domain structure of tetragonal Pb(Zr,Ti)O3 nanorods and its size dependence , 2015 .
[4] H. Funakubo,et al. Negligible substrate clamping effect on piezoelectric response in (111)-epitaxial tetragonal Pb(Zr, Ti)O3 films , 2015 .
[5] A. Tagantsev,et al. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. , 2015, Nature nanotechnology.
[6] A. Tagantsev,et al. Phase transitions associated with competing order parameters in compressively strained SrTiO3 thin films , 2015 .
[7] O. Sakata,et al. Fabrication of tetragonal Pb(Zr,Ti)O 3 nanorods by focused ion beam and characterization of the domain structure , 2015 .
[8] A. Tagantsev,et al. Suppressed polar distortion with enhanced Curie temperature in in-plane 90°-domain structure of a-axis oriented PbTiO3 Film , 2015 .
[9] N. Setter,et al. Post-deposition control of ferroelastic stripe domains and internal electric field by thermal treatment , 2015 .
[10] B. Wang,et al. Controllability of Vortex Domain Structure in Ferroelectric Nanodot: Fruitful Domain Patterns and Transformation Paths , 2014, Scientific Reports.
[11] L. Martin,et al. Stationary domain wall contribution to enhanced ferroelectric susceptibility , 2014, Nature Communications.
[12] A. Tagantsev,et al. Free-electron gas at charged domain walls in insulating BaTiO3 , 2013, Nature Communications.
[13] James F. Scott,et al. Domain wall nanoelectronics , 2012 .
[14] A. Tagantsev,et al. Size effect in ferroelectrics: Competition between geometrical and crystalline symmetries , 2011 .
[15] L. Eric Cross,et al. Domains in Ferroic Crystals and Thin Films , 2010 .
[16] H. Funakubo,et al. Crystal structure and electrical property comparisons of epitaxial Pb(Zr,Ti)O3 thick films grown on (100)CaF2 and (100)SrTiO3 substrates , 2009 .
[17] H. Funakubo,et al. Domain structure of (100)/(001)-oriented epitaxial PbTiO3 thick films with various volume fraction of (001) orientation grown by metal organic chemical vapor deposition , 2009 .
[18] K. Saito,et al. Thick Epitaxial Pb(Zr0.35,Ti0.65)O3 Films Grown on (100)CaF2 Substrates with Polar-Axis-Orientation , 2008 .
[19] James F. Scott,et al. Morphological Control of Polar Orientation in Single-Crystal Ferroelectric Nanowires , 2007 .
[20] S. Venkatesan,et al. Smallest 90° domains in epitaxial ferroelectric films , 2007, 0706.2487.
[21] A. Rappe,et al. Stabilization of monodomain polarization in ultrathin PbTiO3 films. , 2006, Physical review letters.
[22] Long-qing Chen,et al. Temperature-strain phase diagram for BaTiO3 thin films , 2006 .
[23] A Janssens,et al. Polar domains in lead titanate films under tensile strain. , 2005, Physical review letters.
[24] J. Ouyang,et al. Effect of 90° domain movement on the piezoelectric response of patterned PbZr0.2Ti0.8O3∕SrTiO3∕Si heterostructures , 2005 .
[25] A. Rappe,et al. Ferroelectricity in ultrathin perovskite films , 2005, cond-mat/0505051.
[26] S. Shapiro,et al. Strain phase diagram and domain orientation in SrTiO3 thin films. , 2005, Physical review letters.
[27] V. Gopalan,et al. Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.
[28] A. Tagantsev,et al. Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.
[29] V. Nagarajan,et al. Finite element modeling of piezoresponse in nanostructured ferroelectric films , 2004 .
[30] Rainer Waser,et al. Phase diagrams and physical properties of single-domain epitaxialPb(Zr1−xTix)O3thin films , 2003 .
[31] Z. Ban,et al. Phase diagrams and dielectric response of epitaxial barium strontium titanate films: A theoretical analysis , 2002 .
[32] N. Wakiya,et al. Preparation of heteroepitaxial Pb(Mg1/3Nb2/3)O3 (PMN) thin film by pulsed laser deposition on Si(001) substrate using La0.5Sr0.5CoO3 (LSCO)/CeO2/YSZ triple buffer , 2001 .
[33] J. Melngailis,et al. Scaling of ferroelectric properties in thin films , 1999 .
[34] A. Tagantsev,et al. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .
[35] James S. Speck,et al. Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. III. Interfacial defects and domain misorientations , 1995 .
[36] James S. Speck,et al. DOMAIN CONFIGURATIONS DUE TO MULTIPLE MISFIT RELAXATION MECHANISMS IN EPITAXIAL FERROELECTRIC THIN FILMS. I: THEORY , 1994 .
[37] Leslie E. Cross,et al. Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: Curie constant and sixth-order polarization interaction dielectric stiffness coefficients , 1989 .
[38] J. Thornton. High Rate Thick Film Growth , 1977 .
[39] J. Furuichi,et al. Domain Structure of Rochelle Salt and K H 2 P O 4 , 1953 .
[40] Andrew M Rappe,et al. Ferroelectric polarization reversal via successive ferroelastic transitions. , 2015, Nature materials.
[41] Lukasz Nalaskowski,et al. Theoretical Analysis , 2008, Encyclopedia of GIS.
[42] J. Melngailis,et al. Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.