A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR.

[1]  R. Evans,et al.  The steroid and thyroid hormone receptor superfamily. , 1988, Science.

[2]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[3]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[4]  Jasmine Chen,et al.  Identification of a nuclear receptor that is activated by farnesol metabolites , 1995, Cell.

[5]  S. Doublié [29] Preparation of selenomethionyl proteins for phase determination. , 1997, Methods in enzymology.

[6]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[7]  W. Sabbagh,et al.  SXR, a novel steroid and xenobiotic-sensing nuclear receptor. , 1998, Genes & development.

[8]  R. Evans,et al.  Orphan nuclear receptors--new ligands and new possibilities. , 1998, Genes & development.

[9]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[10]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[11]  M. Makishima,et al.  Identification of a nuclear receptor for bile acids. , 1999, Science.

[12]  Jasmine Chen,et al.  Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. , 1999, Molecular cell.

[13]  T. Willson,et al.  Identification of a Bile Acid-responsive Element in the Human Ileal Bile Acid-binding Protein Gene , 1999, The Journal of Biological Chemistry.

[14]  J. Lehmann,et al.  Bile acids: natural ligands for an orphan nuclear receptor. , 1999, Science.

[15]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .

[16]  K. Nicolaou,et al.  Natural Product-like Combinatorial Libraries Based on Privileged Structures. 2. Construction of a 10 000-Membered Benzopyran Library by Directed Split-and-Pool Chemistry Using NanoKans and Optical Encoding , 2000 .

[17]  Helen J. Mitchell,et al.  Natural Product-like Combinatorial Libraries Based on Privileged Structures. 1. General Principles and Solid-Phase Synthesis of Benzopyrans , 2000 .

[18]  T. A. Kerr,et al.  Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. , 2000, Molecular cell.

[19]  D. Moras,et al.  The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. , 2000, Molecular cell.

[20]  Richard A. Heyman,et al.  Orphan Nuclear Receptors , 2000 .

[21]  L. Moore,et al.  Identification of a chemical tool for the orphan nuclear receptor FXR. , 2000, Journal of medicinal chemistry.

[22]  Masahiro Tohkin,et al.  Targeted Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis , 2000, Cell.

[23]  R. Dixon,et al.  Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. , 2000, Biochemistry.

[24]  L. Moore,et al.  A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. , 2000, Molecular cell.

[25]  D. Moore,et al.  The Farnesoid X-activated Receptor Mediates Bile Acid Activation of Phospholipid Transfer Protein Gene Expression* , 2000, The Journal of Biological Chemistry.

[26]  A. Roecker,et al.  Natural Product-like Combinatorial Libraries Based on Privileged Structures. 3. The “Libraries from Libraries” Principle for Diversity Enhancement of Benzopyran Libraries , 2000 .

[27]  P. Chambon,et al.  Crystal structure of the human RXRα ligand‐binding domain bound to its natural ligand: 9‐cis retinoic acid , 2000 .

[28]  R. Evans,et al.  “Don't Know Much Bile-ology” , 2000, Cell.

[29]  P. Edwards,et al.  Identification of the DNA Binding Specificity and Potential Target Genes for the Farnesoid X-activated Receptor* , 2000, The Journal of Biological Chemistry.

[30]  A. Steinmetz,et al.  X‐ray structure of the orphan nuclear receptor RORβ ligand‐binding domain in the active conformation , 2001, The EMBO journal.

[31]  L. Moore,et al.  Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  L. Moore,et al.  The Human Nuclear Xenobiotic Receptor PXR: Structural Determinants of Directed Promiscuity , 2001, Science.

[33]  T. Willson,et al.  6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. , 2002, Journal of medicinal chemistry.

[34]  J. Chiang,et al.  Bile acid regulation of gene expression: roles of nuclear hormone receptors. , 2002, Endocrine reviews.

[35]  D. Russell,et al.  Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. , 2002, Developmental cell.

[36]  M. Karin,et al.  Redundant pathways for negative feedback regulation of bile acid production. , 2002, Developmental cell.

[37]  Paul T Tarr,et al.  Regulation of Multidrug Resistance-associated Protein 2 (ABCC2) by the Nuclear Receptors Pregnane X Receptor, Farnesoid X-activated Receptor, and Constitutive Androstane Receptor* , 2002, The Journal of Biological Chemistry.

[38]  A. Anisfeld,et al.  BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis. , 2002, Journal of lipid research.

[39]  D. Mangelsdorf,et al.  A Natural Product That Lowers Cholesterol As an Antagonist Ligand for FXR , 2002, Science.

[40]  R. Evans,et al.  Discovery and optimization of non-steroidal FXR agonists from natural product-like libraries. , 2003, Organic & biomolecular chemistry.