Repression of Intestinal Stem Cell Function and Tumorigenesis through Direct Phosphorylation of β-Catenin and Yap by PKCζ.

[1]  K. Cadigan Faculty of 1000 evaluation for Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. , 2017 .

[2]  J. Asara,et al.  Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. , 2014, Cell reports.

[3]  R. Nusse,et al.  An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control , 2014, Science.

[4]  Giuseppe Basso,et al.  YAP/TAZ Incorporation in the β-Catenin Destruction Complex Orchestrates the Wnt Response , 2014, Cell.

[5]  Louis Vermeulen,et al.  Stem cell dynamics in homeostasis and cancer of the intestine , 2014, Nature Reviews Cancer.

[6]  K. Guan,et al.  The Hippo signaling pathway in stem cell biology and cancer , 2014, EMBO reports.

[7]  L. Ellis,et al.  Colon Cancer Cells Escape 5FU Chemotherapy-Induced Cell Death by Entering Stemness and Quiescence Associated with the c-Yes/YAP Axis , 2013, Clinical Cancer Research.

[8]  H. Clevers The Intestinal Crypt, A Prototype Stem Cell Compartment , 2013, Cell.

[9]  Li-juan Wang,et al.  Overexpression of YAP and TAZ Is an Independent Predictor of Prognosis in Colorectal Cancer and Related to the Proliferation and Metastasis of Colon Cancer Cells , 2013, PloS one.

[10]  F. Camargo,et al.  The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. , 2013, Current opinion in cell biology.

[11]  J. Mesirov,et al.  β-Catenin-Driven Cancers Require a YAP1 Transcriptional Complex for Survival and Tumorigenesis , 2013, Cell.

[12]  David M. Thomas,et al.  The Hippo pathway and human cancer , 2013, Nature Reviews Cancer.

[13]  Aleksey A. Porollo,et al.  Control of Nutrient Stress-Induced Metabolic Reprogramming by PKCζ in Tumorigenesis , 2013, Cell.

[14]  H. Clevers,et al.  Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties , 2013, Cell.

[15]  R. Moon,et al.  WNT signalling pathways as therapeutic targets in cancer , 2012, Nature Reviews Cancer.

[16]  Jill P. Mesirov,et al.  β-Catenin-Driven Cancers Require a YAP1 Transcriptional Complex for Survival and Tumorigenesis , 2012, Cell.

[17]  Shuji Ogino,et al.  Restriction of intestinal stem cell expansion and the regenerative response by YAP , 2012, Nature.

[18]  C. Niehrs The complex world of WNT receptor signalling , 2012, Nature Reviews Molecular Cell Biology.

[19]  Hans Clevers,et al.  Lineage Tracing Reveals Lgr5+ Stem Cell Activity in Mouse Intestinal Adenomas , 2012, Science.

[20]  Alexander van Oudenaarden,et al.  The Lgr5 Intestinal Stem Cell Signature: Robust Expression of Proposed Quiescent ' Þ 4' Cell Markers , 2022 .

[21]  Hans Clevers,et al.  Wnt Signaling through Inhibition of β-Catenin Degradation in an Intact Axin1 Complex , 2012, Cell.

[22]  F. Camargo,et al.  Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance , 2011, Proceedings of the National Academy of Sciences.

[23]  Nicola Elvassore,et al.  Role of YAP/TAZ in mechanotransduction , 2011, Nature.

[24]  Hans Clevers,et al.  The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. , 2011, Cell stem cell.

[25]  A. Maitra,et al.  The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. , 2010, Genes & development.

[26]  Hans Clevers,et al.  Lineage tracing in the intestinal epithelium. , 2010, Current protocols in stem cell biology.

[27]  Hans Clevers,et al.  Coexistence of Quiescent and Active Adult Stem Cells in Mammals , 2010, Science.

[28]  M. Diaz-Meco,et al.  Of the atypical PKCs, Par-4 and p62: recent understandings of the biology and pathology of a PB1-dominated complex , 2009, Cell Death and Differentiation.

[29]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[30]  Hans Clevers,et al.  Crypt stem cells as the cells-of-origin of intestinal cancer , 2009, Nature.

[31]  E. Montgomery,et al.  Expression of Yes-associated protein in common solid tumors. , 2008, Human pathology.

[32]  A. Durán,et al.  Protein Kinase C (cid:2) Represses the Interleukin-6 Promoter and Impairs Tumorigenesis In Vivo (cid:1) † , 2008 .

[33]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[34]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[35]  Kathleen R. Cho,et al.  Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. , 2007, Cancer research.

[36]  Alma L Burlingame,et al.  A semisynthetic epitope for kinase substrates , 2007, Nature Methods.

[37]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Karin,et al.  IκB-kinaseβ-dependent NF-κB activation provides radioprotection to the intestinal epithelium , 2004 .

[39]  Eric Wieschaus,et al.  Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity. , 2003, Developmental cell.

[40]  Juan F. García,et al.  Targeted Disruption of the ζPKC Gene Results in the Impairment of the NF-κB Pathway , 2001 .

[41]  J Mao,et al.  Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. , 2001, Molecular cell.

[42]  C. Dang,et al.  Neoplastic Transformation of RK3E by Mutant β-Catenin Requires Deregulation of Tcf/Lef Transcription but Not Activation of c-myc Expression , 1999, Molecular and Cellular Biology.

[43]  Hans Clevers,et al.  Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 , 1998, Nature Genetics.

[44]  M. Karin,et al.  IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. , 2004, Proceedings of the National Academy of Sciences of the United States of America.