Lattice thermal conductivity of freestanding gallium nitride nanowires

We report detailed calculations of the lattice thermal conductivity of freestanding gallium nitride (GaN) nanowires with diameters ranging from 20 to 140 nm. Results are compared with experimental data on GaN nanowires grown by thermal chemical vapor deposition (CVD). Calculations are based on the Boltzmann transport equation and take into account the change in the nonequilibrium phonon distribution in the case of diffuse scattering at the surfaces. Phonon dispersion relation is obtained in the elastic continuum approximation for each given nanowire. For valid comparisons with the experimental data, simulations are performed with a dopant concentration and impurity profile characteristic of thermal CVD GaN nanowires. Our results show that the room-temperature thermal conductivity of the nanowires has very low values, ranging from 6.74 W/m K at 20 nm to 16.4 W/m K at 140 nm. The obtained results are in excellent agreement with the experimental data. We have also demonstrated that in addition to impurity sc...

[1]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[2]  Fred H. Pollak,et al.  High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire (0001): Doping dependence , 2000 .

[3]  Yu Huang,et al.  Nanowires for integrated multicolor nanophotonics. , 2004, Small.

[4]  Fei Gao,et al.  Atomistic simulation of the size and orientation dependences of thermal conductivity in GaN nanowires , 2007 .

[5]  A. Balandin,et al.  Acoustic phonon engineering in coated cylindrical nanowires , 2005 .

[6]  Yu,et al.  Electron-acoustic-phonon scattering rates in cylindrical quantum wires. , 1995, Physical review. B, Condensed matter.

[7]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[8]  J. Fischer,et al.  Defects in GaN Nanowires , 2006 .

[9]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[10]  P. Klemens Thermal Conductivity and Lattice Vibrational Modes , 1958 .

[11]  Masashi Yamaguchi,et al.  Structural and vibrational properties of GaN , 1999 .

[12]  A. Witek,et al.  Some aspects of thermal conductivity of isotopically pure diamond—a comparison with nitrides , 1998 .

[13]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[14]  P. Yang,et al.  Self-Organized GaN Quantum Wire UV Lasers , 2003 .

[15]  J. Zou,et al.  Lattice thermal conductivity of nanoscale AlN∕GaN∕AlN heterostructures: Effects of partial phonon spatial confinement , 2006 .

[16]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[17]  David Michael Rowe,et al.  Thermal conduction in semiconductors , 1988 .

[18]  Elaine Lai,et al.  Photoluminescence, thermal transport, and breakdown in joule-heated GaN nanowires. , 2009, Nano letters.

[19]  Alexander A. Balandin,et al.  Increased thermal conductivity of free‐standing low‐dislocation‐density GaN films , 2005 .

[20]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[21]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[22]  Chang-Yong Nam,et al.  Unusually low thermal conductivity of gallium nitride nanowires , 2008 .

[23]  Alexander A. Balandin,et al.  Thermal conductivity of GaN films: Effects of impurities and dislocations , 2002 .

[24]  D. Broido,et al.  Lattice thermal conductivity of wires , 1999 .

[25]  Kang L. Wang,et al.  Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons , 1999 .

[26]  G. Meisner,et al.  Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds , 2004 .

[27]  En Ma,et al.  Chemistry and physics of nanostructures and related non-equilibrium Materials , 1997 .