Carbonatite metasomatism in the southeastern Australian lithosphere

New mineralogical and geochemical data from a suite of glass +/- apatite +/- amphibole +/- phlogopite +/- carbonate-bearing spinel wehrlite, lherzolite and harzburgite xenoliths from the Newer Volcanics, southeastern Australia, are consistent with metasomatic interactions between harzburgitic or refractory lherzolitic lithosphere, and penetrative sodic dolomitic carbonatite melts. Metasomatism occurred when ascending dolomitic carbonatites crossed the reaction enstatite + dolomite = forsterite + diopside + CO2 at similar to 1.5-2.0 GPa, resulting in partial to complete replacement of primary orthopyroxene by sodic clinopyroxene, together with crystallization of apatite, amphibole and phlogopite, and release of CO2-rich fluid. In the sample suite examined, the minimum amount of carbonatite melt may be estimated on the assumption that metasomatism occurred in a closed system, and that the precursor lithology was clinopyroxene-poor harzburgite. The derivative wehrlite compositions require 6-12% carbonatite addition, the lherzolites require similar to 8% or less, and the harzburgites require minimal addition of carbonatite. However, metasomatism probably also involved an open system component, during which by partitioning relationships with the reacting carbonatite, resulting in loss from the metasomatized volume of a fugitive, siliceous, aluminous, alkali- and LILE-enriched silicate melt.

[1]  D. Green,et al.  Glasses in mantle xenoliths from western Victoria, Australia, and their relevance to mantle processes , 1997 .

[2]  P. Wyllie,et al.  Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 GPa compared with mantle melt compositions , 1997 .

[3]  M. Menzies,et al.  Geochemistry of metasomatism adjacent to amphibole-bearing veins in the Lherz peridotite massif , 1996 .

[4]  S. O’Reilly,et al.  Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace-element residence , 1996 .

[5]  D. Green,et al.  Experimental reconstruction of sodic dolomitic carbonatite melts from metasomatised lithosphere , 1996 .

[6]  B. Harte,et al.  Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: Implications for wet melting of the lithospheric mantle , 1996 .

[7]  S. O’Reilly,et al.  Feldspar-bearing lherzolite xenoliths in alkali basalts from Hamar-Daban, southern Baikal region, Russia , 1995 .

[8]  S. Foley,et al.  Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment , 1995 .

[9]  S. O’Reilly,et al.  Plagioclase-bearing Iherzolite xenoliths in alkali basalts from Hamar-Daban, Southern Baikal region, Russia , 1995 .

[10]  V. Prozesky,et al.  Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18-46 kb pressure , 1995 .

[11]  S. O’Reilly,et al.  Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: Connections with the subcontinental lithospheric mantle? , 1995 .

[12]  D. Günther,et al.  Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions , 1995 .

[13]  R. Sweeney Carbonatite melt compositions in the Earth's mantle , 1994 .

[14]  B. Wood,et al.  The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle , 1993 .

[15]  C. Dupuy,et al.  Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism , 1993 .

[16]  S. Hart,et al.  Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle , 1993, Nature.

[17]  R. Macdonald,et al.  Liquid immiscibility between trachyte and carbonate in ash flow tuffs from Kenya , 1993 .

[18]  W. McDonough,et al.  Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics , 1993 .

[19]  P. Wyllie,et al.  High-pressure apatite solubility in carbonate-rich liquids: Implications for mantle metasomatism , 1992 .

[20]  S. Sie,et al.  Trace and minor element partitioning between garnet and amphibole and carbonatitic melt , 1992 .

[21]  Y. Thibault,et al.  Experimental investigation of melts from a carbonated phlogopite Iherzolite : implcations for metasomatism in the continental lithospheric mantle , 1992 .

[22]  C. Dupuy,et al.  Carbonate metasomatism in the lithospheric mantle: peridotitic xenoliths from a melilititic district of the Sahara basin , 1992 .

[23]  C. Dupuy,et al.  Zr/hf fractionation in intraplate basaltic rocks: Carbonate metasomatism in the mantle source , 1992 .

[24]  A. Crawford,et al.  Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia , 1991 .

[25]  E. Watson,et al.  Partitioning of trace elements between carbonate melt and clinopyroxene and olivine at mantle P-T conditions , 1991 .

[26]  W. Griffin,et al.  Residence of trace elements in metasomatized spinel lherzolite xenoliths: a proton-microprobe study , 1991 .

[27]  W. McDonough Constraints on the composition of the continental lithospheric mantle , 1990 .

[28]  D. Canil,et al.  Origin of Phlogopite in Mantle Xenoliths from Kostal Lake, Wells Gray Park, British Columbia , 1989 .

[29]  A. Saunders,et al.  Magmatism in the Ocean Basins , 1989 .

[30]  D. Green,et al.  Mantle metasomatism by ephemeral carbonatite melts , 1988 .

[31]  D. Green,et al.  An experimental determination of primary carbonatite magma composition , 1988, Nature.

[32]  B. Kjarsgaard,et al.  Liquid immiscibility and the origin of alkali-poor carbonatites , 1988, Mineralogical Magazine.

[33]  W. Griffin,et al.  Mantle metasomatism beneath western Victoria, Australia. I. Metasomatic processes in Cr-diopside lherzolites , 1988 .

[34]  C. Dupuy,et al.  Geochemistry of spinel peridotite inclusions in basalts from Sardinia , 1987, Mineralogical Magazine.

[35]  H. Seck,et al.  Spinel peridotite xenoliths from the Tariat Depression, Mongolia. I: Major element chemistry and mineralogy of a primitive mantle xenolith suite , 1986 .

[36]  R. Howie,et al.  Kimberlites II. The Mantle and Crust-Mantle Relationships , 1985, Mineralogical Magazine.

[37]  H. Stockman,et al.  The Ronda high temperature peridotite: Geochemistry and petrogenesis , 1985 .

[38]  M. Prinz,et al.  Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis , 1978 .

[39]  P. Wyllie,et al.  Influence of mantle CO2 in the generation of carbonatites and kimberlites , 1975, Nature.

[40]  P. Deines,et al.  The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon , 1973 .

[41]  D. Green,et al.  Experimental Constraints on the Possible Mantle Origin of Natrocarbonatite , 1995 .

[42]  G. Wörner,et al.  Zirconolite-bearing ultra-potassic veins in a mantle-xenolith from Mt. Melbourne Volcanic Field, Victoria Land, Antarctica , 1991 .

[43]  Yan Song,et al.  Geochemistry of peridotite xenoliths in basalt from Hannuoba, Eastern China: Implications for subcontinental mantle heterogeneity , 1989 .

[44]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[45]  K. Bell Carbonatites : genesis and evolution , 1989 .

[46]  A. Stolz,et al.  Chemical and Isotopic Evidence from Spinel Lherzolite Xenoliths for Episodic Metasomatism of the Upper Mantle beneath Southeast Australia , 1988 .

[47]  A. Chivas,et al.  Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources , 1988 .

[48]  K. Nickel,et al.  The Nature of the Upper-Most Mantle Beneath Victoria, Australia as Deduced from UL Tramafic Xenoliths , 1984 .

[49]  H. Wänke,et al.  Geochemistry of ultramafic xenoliths from Kapfenstein, Austria: evidence for a variety of upper mantle processes , 1980 .