Use of simulation to compare the performance of minimization with stratified blocked randomization

Minimization is an alternative method to stratified permuted block randomization, which may be more effective at balancing treatments when there are many strata. However, its use in the regulatory setting for industry trials remains controversial, primarily due to the difficulty in interpreting conventional asymptotic statistical tests under restricted methods of treatment allocation. We argue that the use of minimization should be critically evaluated when designing the study for which it is proposed. We demonstrate by example how simulation can be used to investigate whether minimization improves treatment balance compared with stratified randomization, and how much randomness can be incorporated into the minimization before any balance advantage is no longer retained. We also illustrate by example how the performance of the traditional model-based analysis can be assessed, by comparing the nominal test size with the observed test size over a large number of simulations. We recommend that the assignment probability for the minimization be selected using such simulations.