Symbiodiniaceae photophysiology and stress resilience is enhanced by microbial associations

[1]  Matthew Z. DeMaere,et al.  Coral endosymbiont growth is enhanced by metabolic interactions with bacteria , 2023, Nature Communications.

[2]  Natsuko Miura,et al.  Mutualistic Interactions between Dinoflagellates and Pigmented Bacteria Mitigate Environmental Stress , 2023, Microbiology spectrum.

[3]  H. Putnam,et al.  The trace metal economy of the coral holobiont: supplies, demands and exchanges , 2022, Biological reviews of the Cambridge Philosophical Society.

[4]  David J. Miller,et al.  DMSP Production by Coral-Associated Bacteria , 2022, Frontiers in Marine Science.

[5]  D. Suggett,et al.  Micronutrient content drives elementome variability amongst the Symbiodiniaceae , 2022, BMC plant biology.

[6]  P. Ralph,et al.  Phenoplate: an innovative method for assessing interacting effects of temperature and light on non-photochemical quenching in microalgae under chemical stress. , 2021, New biotechnology.

[7]  M. V. van Oppen,et al.  A role for bacterial experimental evolution in coral bleaching mitigation? , 2021, Trends in microbiology.

[8]  M. V. van Oppen,et al.  Intracellular bacteria are common and taxonomically diverse in cultured and in hospite algal endosymbionts of coral reefs , 2021, The ISME Journal.

[9]  V. Weis,et al.  Limitations of Using Cultured Algae to Study Cnidarian‐Algal Symbioses and Suggestions for Future Studies , 2020, Journal of phycology.

[10]  A. Mercière,et al.  Defining Coral Bleaching as a Microbial Dysbiosis within the Coral Holobiont , 2020, Microorganisms.

[11]  Laís Feitosa Machado,et al.  Insights into ‘Symbiodiniaceae phycosphere’ in a coral holobiont , 2020 .

[12]  Yalan Chou,et al.  Iron Availability Modulates the Response of Endosymbiotic Dinoflagellates to Heat Stress , 2020, Journal of phycology.

[13]  X. Pochon,et al.  Dimethylsulfoniopropionate concentration in coral reef invertebrates varies according to species assemblages , 2020, Scientific Reports.

[14]  Carlos J. García,et al.  Tetraselmis suecica F&M-M33 phycosphere: associated bacteria and exo-metabolome characterization , 2020, European Journal of Phycology.

[15]  T. Ho,et al.  Endosymbiotic dinoflagellates pump iron: differences in iron and other trace metal needs among the Symbiodiniaceae , 2020, Coral Reefs.

[16]  Senjie Lin,et al.  RNA-seq profiling of Fugacium kawagutii reveals strong responses in metabolic processes and symbiosis potential to deficiencies of iron and other trace metals. , 2020, The Science of the total environment.

[17]  Lisa Fujise,et al.  Revealing changes in the microbiome of Symbiodiniaceae under thermal stress. , 2020, Environmental microbiology.

[18]  Natsuko Miura,et al.  A Zeaxanthin-Producing Bacterium Isolated from the Algal Phycosphere Protects Coral Endosymbionts from Environmental Stress , 2020, mBio.

[19]  M. V. van Oppen,et al.  Symbiodiniaceae-bacteria interactions: rethinking metabolite exchange in reef-building corals as multi-partner metabolic networks. , 2020, Environmental microbiology.

[20]  P. Boyd,et al.  Microbial Competition in the Subpolar Southern Ocean: An Fe–C Co-limitation Experiment , 2020, Frontiers in Marine Science.

[21]  P. Cardol,et al.  Alternative Photosynthetic Electron Transfers and Bleaching Phenotypes Upon Acute Heat Stress in Symbiodinium and Breviolum spp. (Symbiodiniaceae) in Culture , 2019, Front. Mar. Sci..

[22]  Kenneth D. Hoadley,et al.  Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress , 2019, Scientific Reports.

[23]  P. Wincker,et al.  Worldwide Occurrence and Activity of the Reef-Building Coral Symbiont Symbiodinium in the Open Ocean , 2018, Current Biology.

[24]  J. Reimer,et al.  Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts , 2018, Current Biology.

[25]  Jörg C. Frommlet,et al.  Symbiodinium-Induced Formation of Microbialites: Mechanistic Insights From in Vitro Experiments and the Prospect of Its Occurrence in Nature , 2018, Front. Microbiol..

[26]  X. Mayali Editorial: Metabolic Interactions Between Bacteria and Phytoplankton , 2018, Front. Microbiol..

[27]  T. Ho,et al.  Trace Metal Requirements and Interactions in Symbiodinium kawagutii , 2018, Front. Microbiol..

[28]  K. Gould,et al.  Differential ROS Generation in Response to Stress in Symbiodinium spp. , 2018, The Biological Bulletin.

[29]  J. Seymour,et al.  Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium , 2018, Environmental microbiology reports.

[30]  Kenneth D. Hoadley,et al.  Coral physiology and microbiome dynamics under combined warming and ocean acidification , 2018, PloS one.

[31]  T. Lawson,et al.  Limitation of dimethylsulfoniopropionate synthesis at high irradiance in natural phytoplankton communities of the Tropical Atlantic , 2018 .

[32]  U. Roessner,et al.  13C metabolomics reveals widespread change in carbon fate during coral bleaching , 2017, Metabolomics.

[33]  D. Suggett,et al.  Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis. , 2017, Trends in ecology & evolution.

[34]  U. Roessner,et al.  Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of 13 C metabolomics. , 2017, The New phytologist.

[35]  B. Willis,et al.  Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria , 2017, eLife.

[36]  P. Ralph,et al.  A molecular physiology basis for functional diversity of hydrogen peroxide production amongst Symbiodinium spp. (Dinophyceae) , 2017 .

[37]  Xiaohua Zhang,et al.  Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process , 2017, Nature Microbiology.

[38]  S. Palumbi,et al.  Bacterial community dynamics are linked to patterns of coral heat tolerance , 2017, Nature Communications.

[39]  B. Willis,et al.  Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals , 2016, PeerJ.

[40]  A. Grossman,et al.  Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching , 2016, PloS one.

[41]  W. Leggat,et al.  Integral Light-Harvesting Complex Expression In Symbiodinium Within The Coral Acropora aspera Under Thermal Stress , 2016, Scientific Reports.

[42]  P. Ralph,et al.  Functional diversity of photobiological traits within the genus Symbiodinium appears to be governed by the interaction of cell size with cladal designation. , 2015, The New phytologist.

[43]  K. Strzałka,et al.  Photosynthetic Pigments in Diatoms , 2015, Marine drugs.

[44]  M. A. Moran,et al.  Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria , 2015, Nature.

[45]  Jörg C. Frommlet,et al.  Coral symbiotic algae calcify ex hospite in partnership with bacteria , 2015, Proceedings of the National Academy of Sciences.

[46]  T. Trull,et al.  Microbial iron uptake in the naturally fertilized waters in the vicinity of the Kerguelen Islands: phytoplankton–bacteria interactions , 2014 .

[47]  M. Lercher,et al.  Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  J. Banfield,et al.  Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote , 2013, Science.

[49]  H. Jeong,et al.  Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium , 2012, Proceedings of the National Academy of Sciences.

[50]  L. Mydlarz,et al.  Variations in Reactive Oxygen Release and Antioxidant Activity in Multiple Symbiodinium Types in Response to Elevated Temperature , 2012, Microbial Ecology.

[51]  L. Mydlarz,et al.  Variations in Reactive Oxygen Release and Antioxidant Activity in Multiple Symbiodinium Types in Response to Elevated Temperature , 2012, Microbial Ecology.

[52]  G. DiTullio,et al.  Effects of increased temperature on dimethylsulfoniopropionate (DMSP) concentration and methionine synthase activity in Symbiodinium microadriaticum , 2012, Biogeochemistry.

[53]  S. Takaichi Carotenoids in Algae: Distributions, Biosyntheses and Functions , 2011, Marine drugs.

[54]  D. Haarmann,et al.  Use of Blue Agar CAS Assay for Siderophore Detection , 2011, Journal of Microbiology & Biology Education.

[55]  W. Dunlap,et al.  Responses to iron limitation in two colonies of Stylophora pistillata exposed to high temperature: Implications for coral bleaching , 2011 .

[56]  H. Ho,et al.  Supercritical carbon dioxide micronization of zeaxanthin from moderately thermophilic bacteria Muricauda lutaonensis CC-HSB-11T. , 2011, Journal of agricultural and food chemistry.

[57]  C. Carrano,et al.  Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism , 2009, Proceedings of the National Academy of Sciences.

[58]  V. Weis Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis , 2008, Journal of Experimental Biology.

[59]  N. Baker,et al.  PHOTOSYNTHESIS AND PRODUCTION OF HYDROGEN PEROXIDE BY SYMBIODINIUM (PYRRHOPHYTA) PHYLOTYPES WITH DIFFERENT THERMAL TOLERANCES 1 , 2008, Journal of phycology.

[60]  A. Douglas,et al.  Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis , 2007, Molecular ecology.

[61]  Luca Dall’Osto,et al.  Zeaxanthin Has Enhanced Antioxidant Capacity with Respect to All Other Xanthophylls in Arabidopsis Leaves and Functions Independent of Binding to PSII Antennae1[C][W] , 2007, Plant Physiology.

[62]  A. Allen,et al.  Copper‐dependent iron transport in coastal and oceanic diatoms , 2006 .

[63]  Martin J. Warren,et al.  Algae acquire vitamin B12 through a symbiotic relationship with bacteria , 2005, Nature.

[64]  P. Ralph,et al.  Rapid light curves: A powerful tool to assess photosynthetic activity , 2005 .

[65]  T. Yamane,et al.  Zeaxanthin Accumulation in the Absence of a Functional Xanthophyll Cycle Protects Chlamydomonas reinhardtii from Photooxidative Stress Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010405. , 2003, The Plant Cell Online.

[66]  A. Kaplan,et al.  Dinoflagellate-Cyanobacterium Communication May Determine the Composition of Phytoplankton Assemblage in a Mesotrophic Lake , 2002, Current Biology.

[67]  W. Sunda,et al.  An antioxidant function for DMSP and DMS in marine algae , 2002, Nature.

[68]  S. R. Santos,et al.  GENETIC COMPARISONS OF FRESHLY ISOLATED VERSUS CULTURED SYMBIOTIC DINOFLAGELLATES: IMPLICATIONS FOR EXTRAPOLATING TO THE INTACT SYMBIOSIS , 2001 .

[69]  W. Fitt,et al.  Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals : evidence for photoinhibition and photoprotection , 1999, Coral Reefs.

[70]  M. Havaux,et al.  Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content , 1996 .

[71]  G. Sandmann Consequences of iron deficiency on photosynthetic and respiratory electron transport in blue-green algae , 1985, Photosynthesis Research.

[72]  P. Wood Interchangeable copper and iron proteins in algal photosynthesis. Studies on plastocyanin and cytochrome c-552 in Chlamydomonas. , 1978, European journal of biochemistry.

[73]  C. Xue,et al.  Biotechnological production of zeaxanthin by microorganisms , 2018 .

[74]  S. V. Smith,et al.  Coral Bleaching , 2018, Ecological Studies.

[75]  H. Oh,et al.  Algae-bacteria interactions: Evolution, ecology and emerging applications. , 2016, Biotechnology advances.

[76]  A. Arun,et al.  Zeaxanthin biosynthesis by members of the genus Muricauda. , 2014, Polish journal of microbiology.