Ultrahigh-power iron oxysulfide thin films for microbatteries

[1]  Oliver G. Schmidt,et al.  On‐Chip Batteries for Dust‐Sized Computers , 2022, Advanced Energy Materials.

[2]  Bingan Lu,et al.  Achieving Uniform Li Plating/Stripping at Ultrahigh Currents and Capacities by Optimizing 3D Nucleation Sites and Li2Se‐Enriched SEI , 2022, Advanced science.

[3]  Wei Huang,et al.  MOF-Derived Bifunctional Co0.85Se Nanoparticles Embedded in N-Doped Carbon Nanosheet Arrays as Efficient Sulfur Hosts for Lithium-Sulfur Batteries. , 2021, Nano letters.

[4]  Yuliang Cao,et al.  Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves. , 2021, Angewandte Chemie.

[5]  Shuying Cheng,et al.  Close-spaced thermally evaporated 3D Sb2Se3 film for high-rate and high-capacity lithium-ion storage. , 2021, Nanoscale.

[6]  Jie Lin,et al.  Promising Electrode and Electrolyte Materials for High‐Energy‐Density Thin‐Film Lithium Batteries , 2021, ENERGY & ENVIRONMENTAL MATERIALS.

[7]  Steve W. Martin,et al.  Challenges for and Pathways toward Li-Metal-Based All-Solid-State Batteries , 2021, ACS Energy Letters.

[8]  Tao Yang,et al.  A General Strategy for Antimony‐Based Alloy Nanocomposite Embedded in Swiss‐Cheese‐Like Nitrogen‐Doped Porous Carbon for Energy Storage , 2021, Advanced Functional Materials.

[9]  O. Schmidt,et al.  Tiny robots and sensors need tiny batteries — here’s how to do it , 2021, Nature.

[10]  Qinghua Zhang,et al.  Tunnel Intergrowth LixMnO2 Nanosheet Arrays as 3D Cathode for High‐Performance All‐Solid‐State Thin Film Lithium Microbatteries , 2020, Advanced materials.

[11]  Zachary D. Hood,et al.  Lithium-film ceramics for solid-state lithionic devices , 2020, Nature Reviews Materials.

[12]  Jun Zhao,et al.  Unraveling the Reaction Mechanism of FeS2 as a Li-ion Battery Cathode. , 2020, ACS applied materials & interfaces.

[13]  Chunsheng Wang,et al.  Sulfur-embedded FeS2 as a High-Performance Cathode for Room Temperature All-Solid-State Lithium-Sulfur Batteries. , 2020, ACS applied materials & interfaces.

[14]  Martin Winter,et al.  A reality check and tutorial on electrochemical characterization of battery cell materials: How to choose the appropriate cell setup , 2020 .

[15]  L. Soriano,et al.  An XPS investigation on the influence of the substrate and growth conditions on pyrite thin films surface composition , 2019, Applied Surface Science.

[16]  Danielle M. Butts,et al.  Achieving high energy density and high power density with pseudocapacitive materials , 2019, Nature Reviews Materials.

[17]  Liquan Chen,et al.  Li-free Cathode Materials for High Energy Density Lithium Batteries , 2019, Joule.

[18]  K. Chung,et al.  Carbon-free Mn-doped LiFePO4 cathode for highly transparent thin-film batteries , 2019, Journal of Power Sources.

[19]  A. Mauger,et al.  Sputtered LiCoO2 Cathode Materials for All-Solid-State Thin-Film Lithium Microbatteries , 2019, Materials.

[20]  Tanja Kallio,et al.  Room‐Temperature Micropillar Growth of Lithium–Titanate–Carbon Composite Structures by Self‐Biased Direct Current Magnetron Sputtering for Lithium Ion Microbatteries , 2019, Advanced Functional Materials.

[21]  Wei Weng,et al.  Transitional Metal Catalytic Pyrite Cathode Enables Ultrastable Four-Electron-Based All-Solid-State Lithium Batteries. , 2019, ACS nano.

[22]  Teresa Riesgo,et al.  The Extreme Edge at the Bottom of the Internet of Things: A Review , 2019, IEEE Sensors Journal.

[23]  Jinping Liu,et al.  Definitions of Pseudocapacitive Materials: A Brief Review , 2019, ENERGY & ENVIRONMENTAL MATERIALS.

[24]  Jens Glenneberg,et al.  Investigations on morphological and electrochemical changes of all-solid-state thin film battery cells under dynamic mechanical stress conditions , 2019, Nano Energy.

[25]  Martin Winter,et al.  Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems , 2018, Advanced Energy Materials.

[26]  Qinghua Zhang,et al.  Self-Standing 3D Cathodes for All-Solid-State Thin Film Lithium Batteries with Improved Interface Kinetics. , 2018, Small.

[27]  Christophe Lethien,et al.  Sputtered LiMn1.5Ni0.5O4 thin films for Li-ion micro-batteries with high energy and rate capabilities , 2018, Energy Storage Materials.

[28]  Jaeyeong Heo,et al.  Atomic layer deposited zinc oxysulfide anodes in Li-ion batteries: an efficient solution for electrochemical instability and low conductivity , 2018 .

[29]  J. Pikul,et al.  Powering the Internet of Things , 2018, Joule.

[30]  R. Hahn,et al.  Attainable Energy Density of Microbatteries , 2018 .

[31]  H. Abruña,et al.  Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries. , 2018, Accounts of chemical research.

[32]  E. Stach,et al.  Strain Coupling of Conversion-type Fe3 O4 Thin Films for Lithium Ion Batteries. , 2017, Angewandte Chemie.

[33]  Sulin Zhang,et al.  Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries , 2017, npj Computational Materials.

[34]  X. Xia,et al.  Sulfur cathode integrated with multileveled carbon nanoflake-nanosphere networks for high-performance lithium-sulfur batteries , 2017 .

[35]  Seung‐Wan Song,et al.  High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride , 2016 .

[36]  Huisheng Peng,et al.  Integration: An Effective Strategy to Develop Multifunctional Energy Storage Devices , 2016 .

[37]  P. Ajayan,et al.  Design Considerations for Unconventional Electrochemical Energy Storage Architectures , 2015 .

[38]  V. Dubois,et al.  All‐Solid‐State Lithium‐Ion Microbatteries Using Silicon Nanofilm Anodes: High Performance and Memory Effect , 2015 .

[39]  Jun Chen,et al.  Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries , 2015 .

[40]  W. A. Sasangka,et al.  Influences of annealing on lithium-ion storage performance of thick germanium film anodes , 2015 .

[41]  Qing Zhang,et al.  Ultrahigh volumetric capacity lithium ion battery anodes with CNT–Si film , 2014 .

[42]  Qing Zhang,et al.  Vertically aligned CNT-supported thick Ge films as high-performance 3D anodes for lithium ion batteries. , 2014, Small.

[43]  Thomas A. Yersak,et al.  Solid State Enabled Reversible Four Electron Storage , 2013 .

[44]  Seok-Jin Yoon,et al.  Electrochemical properties of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode thin film by RF sputtering for all-solid-state lithium battery , 2012 .

[45]  N. Dudney,et al.  Fabrication and characterization of Li–Mn–Ni–O sputtered thin film high voltage cathodes for Li-ion batteries , 2012 .

[46]  R. Hu,et al.  An amorphous wrapped nanorod LiV3O8 electrode with enhanced performance for lithium ion batteries , 2012 .

[47]  Huajian Gao,et al.  Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands , 2012 .

[48]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[49]  T. Yamashita,et al.  Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials , 2008 .

[50]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[51]  G. Luther,et al.  Chemistry of iron sulfides. , 2007, Chemical reviews.

[52]  W. Skinner,et al.  Ab initio and x-ray photoemission spectroscopy study of the bulk and surface electronic structure of pyrite (100) with implications for reactivity , 2005 .

[53]  K. Fung,et al.  Structure characterization and electrochemical properties of RF sputtered lithium nickel cobalt oxide thin films , 2004 .

[54]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[55]  Brian C. Sales,et al.  Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .

[56]  A. R. Pratt,et al.  X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation , 1994 .

[57]  Claude Guimon,et al.  XPS study of thin films of titanium oxysulfides , 1991 .

[58]  J. Thornton The microstructure of sputter-deposited coatings , 1986 .

[59]  John A. Thornton,et al.  Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings , 1975 .