Stereo vision based navigation for Sun-synchronous exploration

This paper describes the navigation system used on a prototype sun-synchronous robot. Sun-synchrony is a concept that will enable exploration missions by solar-powered rovers that could last months or years. This paper presents the navigation algorithms developed for traversing natural terrain robustly. The novel elements of this work are the refinements necessary to transform laboratory-demonstrated technologies into a form useful for robust, Sun-synchronous exploration. Results of afield experiment in the Canadian Arctic, where the robot traversed 6.1km, 90% autonomously, are also presented.

[1]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[2]  Roberto Manduchi,et al.  Terrain perception for DEMO III , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[3]  Homayoun Seraji Traversability index: a new concept for planetary rovers , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  K. Owens,et al.  Terrain Perception for DEMO I 11 , 2022 .

[5]  David Wettergreen,et al.  Developing Nomad for robotic exploration of the Atacama Desert , 1999, Robotics Auton. Syst..

[6]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[7]  Alonzo Kelly,et al.  Rough Terrain Autonomous Mobility—Part 1: A Theoretical Analysis of Requirements , 1998, Auton. Robots.

[8]  David S. Wettergreen,et al.  Robotic Planetary Exploration by Sun-Synchronous Navigation , 2001 .

[9]  R. Volpe,et al.  Fuzzy reactive piloting for continuous driving of long range autonomous planetary micro-rovers , 1999, 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403).

[10]  Larry Matthies,et al.  Stereo vision and rover navigation software for planetary exploration , 2002, Proceedings, IEEE Aerospace Conference.

[11]  Alonzo Kelly,et al.  Rough Terrain Autonomous Mobility—Part 2: An Active Vision, Predictive Control Approach , 1998, Auton. Robots.

[12]  Edward Tunstel,et al.  Safe navigation on hazardous terrain , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[13]  Kimberly J. Shillcutt,et al.  Solar-based navigation for robotic explorers , 2000 .

[14]  Tara Estlin,et al.  The CLARAty architecture for robotic autonomy , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[15]  Martial Hebert,et al.  A complete navigation system for goal acquisition in unknown environments , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[16]  Jeffrey J. Biesiadecki,et al.  The Athena SDM Rover: a testbed for Mars rover mobility , 2000 .

[17]  William Whittaker,et al.  Mission planning for the Sun-Synchronous Navigation Field Experiment , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[18]  Joel W. Burdick,et al.  An autonomous sensor-based path-planner for planetary microrovers , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[19]  Reid G. Simmons,et al.  Recent progress in local and global traversability for planetary rovers , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).