Airborne vision‐based mapping and classification of large farmland environments

This paper presents a framework for integrating sensor information from an inertial measuring unit (IMU), global positioning system (GPS) receiver, and monocular vision camera mounted to a low‐flying unmanned aerial vehicle (UAV) for producing large‐scale terrain reconstructions and classifying different species of vegetation within the environment. The reconstruction phase integrates all of the sensor information using a statistically optimal nonlinear least‐squares bundle adjustment algorithm to estimate vehicle poses simultaneously to a highly detailed point feature map of the terrain. The classification phase uses feature descriptors based on the color and texture properties of vegetation observed in the vision data and uses the terrain information to build a georeferenced map of different types of vegetation. The resulting system can be used for a range of environmental monitoring missions such as invasive plant detection and biomass mapping. Experimental results of the algorithms are demonstrated in a “weed‐finding” mission over a large farmland area of the Australian outback. © 2010 Wiley Periodicals, Inc.

[1]  Stefan B. Williams,et al.  Error modeling and calibration of exteroceptive sensors for accurate mapping applications , 2010 .

[2]  M. Madden GeoEye-1, the world's highest resolution commercial satellite , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[3]  Matthew Johnson-Roberson,et al.  Airborne smoothing and mapping using vision and inertial sensors , 2009, 2009 IEEE International Conference on Robotics and Automation.

[4]  H. Nagendra,et al.  High resolution satellite imagery for tropical biodiversity studies: the devil is in the detail , 2008, Biodiversity and Conservation.

[5]  Jeremy F. Wallace,et al.  Monitoring an invasive perennial at the landscape scale with remote sensing , 2008 .

[6]  Linda Anderson,et al.  Mapping Mesquite (Prosopis) Distribution and Density Using Visual Aerial Surveys , 2007 .

[7]  Salah Sukkarieh,et al.  Inertial Aiding of Inverse Depth SLAM using a Monocular Camera , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[8]  Kenshi Sakai,et al.  Use of airborne multispectral imagery to discriminate and map weed infestations in a citrus orchard , 2007 .

[9]  Timothy J McCarthy,et al.  Compact Airborne Image Mapping System (CAIMS) , 2007 .

[10]  Salah Sukkarieh,et al.  Building a Robust Implementation of Bearing‐only Inertial SLAM for a UAV , 2007, J. Field Robotics.

[11]  P. Gong,et al.  Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery , 2006 .

[12]  Ashok Samal,et al.  Texture as the basis for individual tree identification , 2006, Inf. Sci..

[13]  Colin J. Taylor,et al.  3D environment capture from monocular video and inertial data , 2006, Electronic Imaging.

[14]  Kenneth Olofsson,et al.  Comparison of three individual tree crown detection methods , 2005, Machine Vision and Applications.

[15]  G. M. Casady,et al.  Detection of Leafy Spurge (Euphorbia esula) Using Multidate High-Resolution Satellite Imagery1 , 2005, Weed Technology.

[16]  Leonid P. Yaroslavsky,et al.  Weed detection in multi-spectral images of cotton fields , 2005 .

[17]  Jacob T. Mundt,et al.  Hyperspectral data processing for repeat detection of small infestations of leafy spurge , 2005 .

[18]  G. Metternicht,et al.  MULTI-TEMPORAL SPATIAL MODELLING OF NOXIOUS WEED DISTRIBUTION USING HISTORICAL REMOTE SENSING IMAGERY , 2005 .

[19]  Reinhard Koch,et al.  Visual Modeling with a Hand-Held Camera , 2004, International Journal of Computer Vision.

[20]  Shutao Li,et al.  Comparison and fusion of multiresolution features for texture classification , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[21]  Philip H. S. Torr,et al.  The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.

[22]  Alexandre Carleer,et al.  Exploitation of Very High Resolution Satellite Data for Tree Species Identification , 2004 .

[23]  Lei Tian,et al.  CLASSIFICATION OF BROADLEAF AND GRASS WEEDS USING GABOR WAVELETS AND AN ARTIFICIAL NEURAL NETWORK , 2003 .

[24]  H. Durrant-Whyte,et al.  The ANSER Project: Data Fusion Across Multiple Uninhabited Air Vehicles , 2003 .

[25]  Gang Xu,et al.  Information fusion for rural land-use classification with high-resolution satellite imagery , 2003, IEEE Trans. Geosci. Remote. Sens..

[26]  K. Lertzman,et al.  Combining High-Resolution Aerial Photography with Gradient-Directed Transects to Guide Field Sampling and Forest Mapping in Mountainous Terrain , 2003, Forest Science.

[27]  Manfred Ehlers,et al.  Automated analysis of ultra high resolution remote sensing data for biotope type mapping: new possibilities and challenges , 2003 .

[28]  J. Paruelo,et al.  Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data , 2003 .

[29]  Paul L. Patterson,et al.  Classification accuracy for stratification with remotely sensed data , 2003 .

[30]  Salah Sukkarieh,et al.  Real-Time Navigation, Guidance, and Control of a UAV Using Low-Cost Sensors , 2003, FSR.

[31]  N. Zhang,et al.  Precision agriculture—a worldwide overview , 2002 .

[32]  Darius S. Culvenor,et al.  TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery , 2002 .

[33]  Pi-Fuei Hsieh,et al.  Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing , 2001, IEEE Trans. Geosci. Remote. Sens..

[34]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[35]  G. Hill,et al.  Vegetation mapping of a tropical freshwater swamp in the Northern Territory, Australia: A comparison of aerial photography, Landsat TM and SPOT satellite imagery , 2001 .

[36]  Lei Tian,et al.  AERIAL CIR REMOTE SENSING FOR WEED DENSITY MAPPING IN A SOYBEAN FIELD , 2001 .

[37]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[38]  K. Schwarz,et al.  A Multi-Sensor System for Airborne Image Capture and Georeferencing , 2000 .

[39]  Rama Chellappa,et al.  Reduction of inherent ambiguities in structure from motion problem using inertial data , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[40]  F. E. LaMastus,et al.  Using remote sensing to detect weed infestations in Glycine max , 2000, Weed Science.

[41]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[42]  J. F. Reid,et al.  Texture-Based Weed Classification Using Gabor Wavelets and Neural Network for Real-time Selective Herbicide Applications , 2000 .

[43]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[44]  Si Wu,et al.  Improving support vector machine classifiers by modifying kernel functions , 1999, Neural Networks.

[45]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[46]  Reinhard Koch,et al.  Multi Viewpoint Stereo from Uncalibrated Video Sequences , 1998, ECCV.

[47]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[48]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[49]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[50]  William T. Freeman,et al.  Presented at: 2nd Annual IEEE International Conference on Image , 1995 .

[51]  James R. Bergen,et al.  Pyramid-based texture analysis/synthesis , 1995, Proceedings., International Conference on Image Processing.

[52]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[53]  C.-C. Jay Kuo,et al.  Texture analysis and classification with tree-structured wavelet transform , 1993, IEEE Trans. Image Process..

[54]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[55]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[56]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[57]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.