Network thermodynamic curation of human and yeast genome-scale metabolic models.

[1]  Joshua J. Hamilton,et al.  Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models. , 2013, Biophysical journal.

[2]  Ronan M. T. Fleming,et al.  Consistent Estimation of Gibbs Energy Using Component Contributions , 2013, PLoS Comput. Biol..

[3]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[4]  Christoph Steinbeck,et al.  The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013 , 2012, Nucleic Acids Res..

[5]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[6]  Kathleen A. Curran,et al.  Expanding the chemical palate of cells by combining systems biology and metabolic engineering. , 2012, Metabolic engineering.

[7]  Pedro Mendes,et al.  Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network , 2012, BMC Systems Biology.

[8]  Ronan M. T. Fleming,et al.  Quantitative assignment of reaction directionality in a multicompartmental human metabolic reconstruction. , 2012, Biophysical journal.

[9]  G. Muzio,et al.  Aldehyde dehydrogenases and cell proliferation. , 2012, Free radical biology & medicine.

[10]  Stefan J. Jol,et al.  Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks. , 2010, Biophysical journal.

[11]  L. Quek,et al.  AraGEM, a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis1[W] , 2009, Plant Physiology.

[12]  Ronan M. T. Fleming,et al.  Quantitative assignment of reaction directionality in constraint-based models of metabolism: application to Escherichia coli. , 2009, Biophysical chemistry.

[13]  Susumu Goto,et al.  KEGG for representation and analysis of molecular networks involving diseases and drugs , 2009, Nucleic Acids Res..

[14]  Urs von Stockar,et al.  Influence of uncertainties in pH, pMg, activity coefficients, metabolite concentrations, and other factors on the analysis of the thermodynamic feasibility of metabolic pathways , 2009, Biotechnology and bioengineering.

[15]  Lixue Dong,et al.  The Redox Environment in the Mitochondrial Intermembrane Space Is Maintained Separately from the Cytosol and Matrix* , 2008, Journal of Biological Chemistry.

[16]  Markus J. Herrgård,et al.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology , 2008, Nature Biotechnology.

[17]  Matthew D. Jankowski,et al.  Group contribution method for thermodynamic analysis of complex metabolic networks. , 2008, Biophysical journal.

[18]  Adam M. Feist,et al.  The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli , 2008, Nature Biotechnology.

[19]  Nicola Zamboni,et al.  anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data , 2008, BMC Bioinformatics.

[20]  Mike Tyers,et al.  The size of the nucleus increases as yeast cells grow. , 2007, Molecular biology of the cell.

[21]  L. Gladden Is there an intracellular lactate shuttle in skeletal muscle? , 2007, The Journal of physiology.

[22]  V. Vasiliou,et al.  Neurotoxicity and Metabolism of the Catecholamine-Derived 3,4-Dihydroxyphenylacetaldehyde and 3,4-Dihydroxyphenylglycolaldehyde: The Role of Aldehyde Dehydrogenase , 2007, Pharmacological Reviews.

[23]  V. Hatzimanikatis,et al.  Thermodynamics-based metabolic flux analysis. , 2007, Biophysical journal.

[24]  Xiaodong Wang,et al.  Diazonamide toxins reveal an unexpected function for ornithine δ-amino transferase in mitotic cell division , 2007, Proceedings of the National Academy of Sciences.

[25]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[26]  S. Panke,et al.  Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data , 2006, Molecular systems biology.

[27]  J. Winther,et al.  Measuring intracellular redox conditions using GFP-based sensors. , 2006, Antioxidants & redox signaling.

[28]  R. Alberty Biochemical thermodynamics: applications of Mathematica. , 2006, Methods of biochemical analysis.

[29]  Matthew D. Jankowski,et al.  Genome-scale thermodynamic analysis of Escherichia coli metabolism. , 2006, Biophysical journal.

[30]  U. von Stockar,et al.  How reliable are thermodynamic feasibility statements of biochemical pathways? , 2005, Biotechnology and bioengineering.

[31]  E. Luk,et al.  Manganese Activation of Superoxide Dismutase 2 in the Mitochondria of Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[32]  P. Pinton,et al.  pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. , 2005, Biochemical and biophysical research communications.

[33]  Devin Oglesbee,et al.  Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[34]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[35]  A Miyawaki,et al.  Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Graeme M. Walker,et al.  Yeast Physiology and Biotechnology , 1998 .

[37]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[38]  Michael L. Mavrovouniotis,et al.  Identification of Localized and Distributed Bottlenecks in Metabolic Pathways , 1993, ISMB.

[39]  J. Stubbe,et al.  Purification and characterization of the purE, purK, and purC gene products: identification of a previously unrecognized energy requirement in the purine biosynthetic pathway. , 1992, Biochemistry.

[40]  Marjoriec . Brandrissandborismagasanik,et al.  Subcellular compartmentation in control of converging pathways for proline and arginine metabolism in Saccharomyces cerevisiae , 1981, Journal of bacteriology.

[41]  W. Dewey,et al.  Quantification of mitochondria during the cell cycle of Chinese hamster cells. , 1976, Experimental cell research.

[42]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010, Nature Protocols.

[43]  Miguel Rocha,et al.  Analysis of the Effect of Reversibility Constraints on the Predictions of Genome-Scale Metabolic Models , 2010, IWPACBB.

[44]  Lake-Ee Quek,et al.  On the reconstruction of the Mus musculus genome-scale metabolic network model. , 2008, Genome informatics. International Conference on Genome Informatics.

[45]  R. Alberty Thermodynamics of Biochemical Reactions , 2003 .

[46]  A. Emons,et al.  Boekbespreking: Molecular biology of the cell, B. Alberts, D. Bray, J. Lewis, M. Raff, K. Robers, D.J. Watson. Garland Publ., New York. 1989. , 1990 .