Vaccination with a co‐expression DNA plasmid containing GAD65 fragment gene and IL‐10 gene induces regulatory CD4+ T cells that prevent experimental autoimmune diabetes

The non‐obese diabetic (NOD) mouse is a commonly used animal model for studying type 1 diabetes (T1D). The aims of our study were to explore the diabetes‐preventive effect in NOD mice and the potential mechanisms of an optimized co‐expression DNA vaccine containing GAD65 fragment gene with the IL‐10 gene (SGAD65190‐315/IL‐10).

[1]  C. Mathieu,et al.  Oral Delivery of Glutamic Acid Decarboxylase (GAD)-65 and IL10 by Lactococcus lactis Reverses Diabetes in Recent-Onset NOD Mice , 2014, Diabetes.

[2]  M. V. von Herrath,et al.  Combination Therapy With an Anti–IL-1β Antibody and GAD65 DNA Vaccine Can Reverse Recent-Onset Diabetes in the RIP-GP Mouse Model , 2014, Diabetes.

[3]  M. V. von Herrath,et al.  The clinical and immunological significance of GAD-specific autoantibody and T-cell responses in type 1 diabetes. , 2013, Journal of autoimmunity.

[4]  C. Mathieu,et al.  Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. , 2012, The Journal of clinical investigation.

[5]  Juan Pedro López,et al.  GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. , 2012, The New England journal of medicine.

[6]  M. Soares,et al.  An Evaluation of the Spontaneous Proliferation of Peripheral Blood Mononuclear Cells in HTLV-1-Infected Individuals Using Flow Cytometry , 2011, ISRN oncology.

[7]  Darrell M. Wilson,et al.  Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial , 2011, The Lancet.

[8]  M. Battaglia,et al.  Immune intervention with T regulatory cells: past lessons and future perspectives for type 1 diabetes. , 2011, Seminars in immunology.

[9]  M. V. von Herrath,et al.  Genetic-induced variations in the GAD65 T-cell repertoire governs efficacy of anti-CD3/GAD65 combination therapy in new-onset type 1 diabetes. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[10]  Gisen Kim,et al.  Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis , 2009, Nature Immunology.

[11]  Jonathan H. Esensten,et al.  T-bet-Deficient NOD Mice Are Protected from Diabetes Due to Defects in Both T Cell and Innate Immune System Function1 , 2009, The Journal of Immunology.

[12]  Johnny Ludvigsson,et al.  GAD treatment and insulin secretion in recent-onset type 1 diabetes. , 2008, The New England journal of medicine.

[13]  Yan Li,et al.  Gene delivery GAD 500 autoantigen by AAV serotype 1 prevented diabetes in NOD mice: transduction efficiency do not play important roles. , 2008, Immunology letters.

[14]  J. Bluestone,et al.  Constitutive Expression of B7-1 on B Cells Uncovers Autoimmunity toward the B Cell Compartment in the Nonobese Diabetic Mouse1 , 2007, The Journal of Immunology.

[15]  Michael Loran Dustin,et al.  Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo , 2006, The Journal of experimental medicine.

[16]  P. Snow,et al.  Induction of Autoantigen-Specific Th2 and Tr1 Regulatory T Cells and Modulation of Autoimmune Diabetes1 , 2003, The Journal of Immunology.

[17]  H. Mcdevitt,et al.  CD4+ T Cells from Glutamic Acid Decarboxylase (GAD)65-specific T Cell Receptor Transgenic Mice Are Not Diabetogenic and Can Delay Diabetes Transfer , 2002, The Journal of experimental medicine.

[18]  Ethan M. Shevach,et al.  CD4+CD25+ suppressor T cells: more questions than answers , 2002, Nature Reviews Immunology.

[19]  R. Sherwin,et al.  Prevention of autoimmune diabetes by immunogene therapy using recombinant vaccinia virus expressing glutamic acid decarboxylase , 2002, Diabetologia.

[20]  M. V. von Herrath,et al.  Plasmid Vaccination with Insulin B Chain Prevents Autoimmune Diabetes in Nonobese Diabetic Mice1 , 2001, The Journal of Immunology.

[21]  R. Tisch,et al.  Plasmid DNAs Encoding Insulin and Glutamic Acid Decarboxylase 65 Have Distinct Effects on the Progression of Autoimmune Diabetes in Nonobese Diabetic Mice1 , 2001, The Journal of Immunology.

[22]  H. Weiner,et al.  Mucosal administration of IL-10 enhances oral tolerance in autoimmune encephalomyelitis and diabetes. , 2001, International immunology.

[23]  N. Sarvetnick,et al.  Vaccination with glutamic acid decarboxylase plasmid DNA protects mice from spontaneous autoimmune diabetes and B7/CD28 costimulation circumvents that protection. , 2001, Clinical immunology.

[24]  M. Filippova,et al.  Effects of plasmid DNA injection on cyclophosphamide-accelerated diabetes in NOD mice. , 2001, DNA and cell biology.

[25]  R. Tisch,et al.  Antigen-Specific Mediated Suppression of β Cell Autoimmunity by Plasmid DNA Vaccination1 , 2001, The Journal of Immunology.

[26]  D. Hassett,et al.  Immune Responses following Neonatal DNA Vaccination Are Long-Lived, Abundant, and Qualitatively Similar to Those Induced by Conventional Immunization , 2000, Journal of Virology.

[27]  R. Sherwin,et al.  Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. , 1999, Science.

[28]  R. Tisch,et al.  Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. , 1999, Journal of immunology.

[29]  R. Sherwin,et al.  Control of Autoimmune Diabetes in NOD Mice by GAD Expression or Suppression in β Cells , 1999 .

[30]  D. Weiner,et al.  Specific immune induction following DNA-based immunization through in vivo transfection and activation of macrophages/antigen-presenting cells. , 1998, Journal of immunology.

[31]  H. Kolb,et al.  Potential risk of oral insulin with adjuvant for the prevention of Type I diabetes: a protocol effective in NOD mice may exacerbate disease in BB rats , 1998, Diabetologia.

[32]  R. Tisch,et al.  Induction of GAD65-specific regulatory T-cells inhibits ongoing autoimmune diabetes in nonobese diabetic mice. , 1998, Diabetes.

[33]  M. Atkinson,et al.  Characterization of novel T-cell epitopes on 65 kDa and 67 kDa glutamic acid decarboxylase relevant in autoimmune responses in NOD mice. , 1998, Journal of autoimmunity.

[34]  R. Steinman,et al.  Antigen Presentation by Dendritic Cells after Immunization with DNA Encoding a Major Histocompatibility Complex Class II–restricted Viral Epitope , 1997, The Journal of experimental medicine.

[35]  I. Cohen,et al.  The Th1/Th2 dichotomy, hsp60 autoimmunity, and type I diabetes. , 1997, Clinical immunology and immunopathology.

[36]  A. Jevnikar,et al.  Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance , 1997, Nature Medicine.

[37]  P. Musto,et al.  Vaccination against influenza in multiple myeloma. , 1997, British journal of haematology.

[38]  A. Tobin,et al.  Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes–prone mice , 1996, Nature Medicine.

[39]  L. Harrison,et al.  Aerosol Insulin Induces Regulatory CD8 γδ T Cells That Prevent Murine Insulin-dependent Diabetes , 1996, The Journal of experimental medicine.

[40]  M. Colston,et al.  Vaccination against tuberculosis by DNA injection , 1996, Nature Medicine.

[41]  I. Cohen,et al.  Suppressive vaccination with DNA encoding a variable region gene of the T–cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity , 1996, Nature Medicine.

[42]  J. D. de Vries,et al.  Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells , 1996, The Journal of experimental medicine.

[43]  M. Atkinson,et al.  Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes , 1996, The Journal of experimental medicine.

[44]  D. Wegmann,et al.  Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23). , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Pléau,et al.  Prevention of autoimmune diabetes in nonobese diabetic female mice by treatment with recombinant glutamic acid decarboxylase (GAD 65). , 1995, Clinical immunology and immunopathology.

[46]  A. Tobin,et al.  Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes , 1993, Nature.

[47]  R. Tisch,et al.  Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice , 1993, Nature.

[48]  S. Ben‐Sasson,et al.  Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation , 1992, The Journal of cell biology.

[49]  G. Acsadi,et al.  Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. , 1992, Human molecular genetics.

[50]  M. Atkinson,et al.  64 000 Mr autoantibodies as predictors of insulin-dependent diabetes , 1990, The Lancet.

[51]  M. V. von Herrath,et al.  Type 1 diabetes: etiology, immunology, and therapeutic strategies. , 2011, Physiological reviews.

[52]  Pau Serra,et al.  Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice , 2006, Nature Immunology.

[53]  Y. Glinka,et al.  DNA Vaccination against Autoimmune Diseases , 2005 .

[54]  R. Coffman,et al.  Interleukin-10 and the interleukin-10 receptor. , 2001, Annual review of immunology.

[55]  H. Mcdevitt,et al.  Identification of immunogenic epitopes of GAD 65 presented by A g7 in non-obese diabetic mice , 1997, Immunogenetics.

[56]  S. Ben‐Sasson,et al.  Identification of dying cells--in situ staining. , 1995, Methods in cell biology.