Geometric and Numerical Techniques in Optimal Control of Two and Three-Body Problems
暂无分享,去创建一个
[1] Kenneth R. Meyer,et al. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .
[2] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[3] Andrey Sarychev,et al. Existence and Lipschitzian Regularity for Relaxed Minimizers , 2008 .
[4] Staffan Persson,et al. SMART-1 mission description and development status , 2002 .
[5] J. Caillau. Contribution à l'étude du contrôle en temps minimal des transferts orbitaux , 2000 .
[6] V. Szebehely. Theory of Orbits: The Restricted Problem of Three Bodies , 1968 .
[8] G. Bliss. Lectures on the calculus of variations , 1946 .
[9] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[10] I. Holopainen. Riemannian Geometry , 1927, Nature.
[11] Sophie Geffroy,et al. Généralisation des techniques de moyennation en contrôle optimal : application aux problèmes de transfert et rendez-vous orbitaux à poussée faible , 1997 .
[12] F. Chaplais,et al. Averaging and deterministic optimal control , 1987 .
[13] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[14] Alain Bensoussan,et al. Regular Perturbations in Optimal Control , 1982 .
[15] Tosio Kato. Perturbation theory for linear operators , 1966 .
[16] Minoru Tanaka,et al. The cut locus of a two-sphere of revolution and Toponogov's comparison theorem , 2007 .
[17] Shane D. Ross,et al. New methods in celestial mechanics and mission design , 2005 .
[18] Jean-Baptiste Caillau,et al. Second order optimality conditions in the smooth case and applications in optimal control , 2007 .
[19] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[20] Jean-Baptiste Caillau,et al. On some Riemannian aspects of two and three-body controlled problems , 2010 .
[21] A. Bellaïche. The tangent space in sub-riemannian geometry , 1994 .
[22] E. Allgower,et al. Numerical Continuation Methods , 1990 .
[24] Eugene L. Allgower,et al. Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.
[25] Thomas Haberkorn,et al. Homotopy method for minimum consumption orbit transfer problem , 2006 .
[26] Theodore N. Edelbaum. Optimum Low-Thrust Rendezvous and Station Keeping , 2003 .
[27] Bernard Bonnard,et al. Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust , 2007 .
[28] Bernard H. Foing,et al. SMART-1: The First Time of Europe to the Moon , 2001 .
[29] Bernard Bonnard,et al. THE SMOOTH CONTINUATION METHOD IN OPTIMAL CONTROL WITH AN APPLICATION TO QUANTUM SYSTEMS , 2011 .
[30] Harry Pollard. Mathematical Introduction to Celestial Mechanics , 1966 .
[31] Bernard Bonnard,et al. Geodesic flow of the averaged controlled Kepler equation , 2009 .
[32] Jean-Baptiste Caillau,et al. Conjugate and cut loci of a two-sphere of revolution with application to optimal control , 2009 .