Geometric and Numerical Techniques in Optimal Control of Two and Three-Body Problems

The objective of this article is to present geometric and numerical techniques developed to study the orbit transfer between Keplerian elliptic orbits in the two-body problem or between quasi-Keplerian orbits in the Earth-Moon transfer when low propulsion is used. We concentrate our study on the energy minimization problem. From Pontryagin's maximum principle, the optimal solution can be found solving the shooting equation for smooth Hamiltonian dynamics. A first step in the analysis is to find in the Kepler case an analytical solution for the averaged Hamiltonian, which corresponds to a Riemannian metric. This will allow to compute the solution for the original Kepler problem, using a numerical continuation method where the smoothness of the path is related to the conjugate point condition. Similarly, the solution of the Earth-Moon transfer is computed using geometric and numerical continuation techniques.

[1]  Kenneth R. Meyer,et al.  Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .

[2]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[3]  Andrey Sarychev,et al.  Existence and Lipschitzian Regularity for Relaxed Minimizers , 2008 .

[4]  Staffan Persson,et al.  SMART-1 mission description and development status , 2002 .

[5]  J. Caillau Contribution à l'étude du contrôle en temps minimal des transferts orbitaux , 2000 .

[6]  V. Szebehely Theory of Orbits: The Restricted Problem of Three Bodies , 1968 .

[8]  G. Bliss Lectures on the calculus of variations , 1946 .

[9]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[10]  I. Holopainen Riemannian Geometry , 1927, Nature.

[11]  Sophie Geffroy,et al.  Généralisation des techniques de moyennation en contrôle optimal : application aux problèmes de transfert et rendez-vous orbitaux à poussée faible , 1997 .

[12]  F. Chaplais,et al.  Averaging and deterministic optimal control , 1987 .

[13]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[14]  Alain Bensoussan,et al.  Regular Perturbations in Optimal Control , 1982 .

[15]  Tosio Kato Perturbation theory for linear operators , 1966 .

[16]  Minoru Tanaka,et al.  The cut locus of a two-sphere of revolution and Toponogov's comparison theorem , 2007 .

[17]  Shane D. Ross,et al.  New methods in celestial mechanics and mission design , 2005 .

[18]  Jean-Baptiste Caillau,et al.  Second order optimality conditions in the smooth case and applications in optimal control , 2007 .

[19]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[20]  Jean-Baptiste Caillau,et al.  On some Riemannian aspects of two and three-body controlled problems , 2010 .

[21]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[22]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[24]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[25]  Thomas Haberkorn,et al.  Homotopy method for minimum consumption orbit transfer problem , 2006 .

[26]  Theodore N. Edelbaum Optimum Low-Thrust Rendezvous and Station Keeping , 2003 .

[27]  Bernard Bonnard,et al.  Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust , 2007 .

[28]  Bernard H. Foing,et al.  SMART-1: The First Time of Europe to the Moon , 2001 .

[29]  Bernard Bonnard,et al.  THE SMOOTH CONTINUATION METHOD IN OPTIMAL CONTROL WITH AN APPLICATION TO QUANTUM SYSTEMS , 2011 .

[30]  Harry Pollard Mathematical Introduction to Celestial Mechanics , 1966 .

[31]  Bernard Bonnard,et al.  Geodesic flow of the averaged controlled Kepler equation , 2009 .

[32]  Jean-Baptiste Caillau,et al.  Conjugate and cut loci of a two-sphere of revolution with application to optimal control , 2009 .