Some new construction methods for t-norms on bounded lattices

ABSTRACT In this paper, three methods for constructing triangular norms on a bounded lattice L from t-norm W on sub-lattice of L are investigated. An example is added to reveal the difference of three construction methods. The smallest t-norm in the class of all triangular norms on a lattice L whose restriction to the subinterval of L is a priori fixed t-norm W is determined.

[1]  Didier Dubois,et al.  A class of fuzzy measures based on triangular norms , 1982 .

[2]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[3]  Radko Mesiar,et al.  Aggregation functions on bounded lattices , 2017, Int. J. Gen. Syst..

[4]  Funda Karaçal,et al.  t-closure Operators , 2018, Int. J. Gen. Syst..

[5]  Gül Deniz Çayli,et al.  On a new class of t-norms and t-conorms on bounded lattices , 2018, Fuzzy Sets Syst..

[6]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[7]  Gül Deniz Çayli,et al.  A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms , 2018, Int. J. Gen. Syst..

[8]  Radko Mesiar,et al.  Modified Ordinal Sums of Triangular Norms and Triangular Conorms on Bounded Lattices , 2015, Int. J. Intell. Syst..

[9]  Gert de Cooman,et al.  Order norms on bounded partially ordered sets. , 1994 .

[10]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[11]  Funda Karaçal,et al.  A t-partial order obtained from t-norms , 2011, Kybernetika.

[12]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Radko Mesiar,et al.  On internal and locally internal uninorms on bounded lattices , 2018, Int. J. Gen. Syst..

[14]  Susanne Saminger-Platz,et al.  On ordinal sums of triangular norms on bounded lattices , 2006, Fuzzy Sets Syst..

[15]  Susanne Saminger,et al.  On ordinal sums of triangular norms on bounded lattices , 2006 .

[16]  Radim Belohlávek,et al.  Sup-t-norm and inf-residuum are a single type of relational equations , 2011, Int. J. Gen. Syst..

[17]  Ronald R. Yager,et al.  Generalized triangular norm and conorm aggregation operators on ordinal spaces , 2003, Int. J. Gen. Syst..

[18]  Radko Mesiar,et al.  Characterization of uninorms on bounded lattices , 2017, Fuzzy Sets Syst..