Baryon structure in a quark-confining nonlocal Nambu-Jona-Lasinio model.

We studied the nucleon and diquarks in a nonlocal Nambu-Jona-Lasinio model. For certain parameters the model exhibits quark confinement in the form of a propagator without real poles. After truncation of the two-body channels to the scalar and axial-vector diquarks, a relativistic Faddeev equation for nucleon bound states was solved in the covariant diquark-quark picture. The dependence of the nucleon mass on diquark masses was studied in detail. We found parameters that lead to a simultaneous reasonable description of pions and nucleons. Both the diquarks contribute attractively to the nucleon mass. Axial-vector diquark correlations are seen to be important, esp. in the confining phase of the model. We studied the possible implications of quark confinement for the description of the diquarks and the nucleon. In particular, we found that it leads to a more compact nucleon. [on SciFinder (R)]

[1]  D. Dumm,et al.  Light pseudoscalar mesons in a nonlocal SU(3) chiral quark model , 2003, hep-ph/0311030.

[2]  P. Tandy,et al.  Confinement phenomenology in the Bethe-Salpeter equation , 2002, hep-ph/0212276.

[3]  M. Oettel,et al.  Nucleon mass and pion loops , 2002, nucl-th/0201084.

[4]  N. Ishii,et al.  Axial vector diquark correlations in the nucleon: structure functions and static properties , 2002, nucl-th/0201082.

[5]  R. Alkofer,et al.  Relativistic Three-Quark Bound States in Separable Two-Quark Approximation , 2001, hep-ph/0109285.

[6]  D. Dumm,et al.  Chiral quark models with nonlocal separable interactions at finite temperature and chemical potential , 2001, hep-ph/0107251.

[7]  W. Broniowski,et al.  Solitons in nonlocal chiral quark models , 2001, hep-ph/0107139.

[8]  A. Thomas,et al.  The stability of nuclear matter in the Nambu–Jona-Lasinio model , 2001, nucl-th/0105022.

[9]  Anthony G Williams,et al.  Nonperturbative improvement and tree-level correction of the quark propagator , 2001, hep-lat/0102013.

[10]  H. Weigel,et al.  Production processes as a tool to study parametrizations of quark confinement , 2000, hep-ph/0012282.

[11]  I. General,et al.  Chiral phase transition in a covariant nonlocal NJL model , 2000, hep-ph/0010034.

[12]  I. Anikin,et al.  Pion structure in the instanton liquid model , 2000 .

[13]  R. Alkofer,et al.  Nucleon properties in the covariant quark-diquark model , 2000, nucl-th/0006082.

[14]  M. Oertel,et al.  Meson Properties in the 1/Nc-corrected NJL model , 2000, hep-ph/0001239.

[15]  N. Walet,et al.  Nucleons or diquarks? Competition between clustering and color superconductivity in quark matter , 1999, hep-ph/9912475.

[16]  M. Oertel,et al.  Pion Properties in the 1/Nc-corrected NJL model , 1999, hep-ph/9908475.

[17]  F. Rapuano,et al.  The QCD chiral condensate from the lattice , 1998, hep-lat/9807014.

[18]  N. Ishii Meson exchange contributions to the nucleon mass in the Faddeev approach to the NJL model , 1998 .

[19]  W. Broniowski,et al.  Solitons in a chiral quark model with non-local interactions 1 Research supported by the Polish Stat , 1998, hep-ph/9807261.

[20]  R. Alkofer,et al.  Octet and decuplet baryons in a covariant and confining diquark - quark model , 1998, nucl-th/9805054.

[21]  M. Heß,et al.  Diquark masses from lattice QCD , 1998, hep-lat/9804023.

[22]  S. Narison,et al.  Direct extraction of the chiral quark condensate and bounds on the light quark masses , 1997, hep-ph/9709215.

[23]  R. Plant,et al.  Meson properties in an extended non-local NJL model , 1997, hep-ph/9705372.

[24]  T. Schaefer,et al.  Instantons in QCD , 1996, hep-ph/9610451.

[25]  R. Alkofer,et al.  Nucleon form factors in a covariant diquark-quark model , 1997, hep-ph/0105320.

[26]  Efimov,et al.  Meson masses within the model of induced nonlocal quark currents. , 1996, Physical review. D, Particles and fields.

[27]  K. Langfeld,et al.  Quark Confinement in a Constituent Quark Model , 1995, hep-ph/9506265.

[28]  Ishii,et al.  Static properties of the nucleon in the Faddeev approach based on the Nambu-Jona-Lasinio model. , 1995, Physical review. C, Nuclear physics.

[29]  N. Ishii,et al.  Baryons in the NJL model as solutions of the relativistic Faddeev equation , 1995 .

[30]  C. Weiss,et al.  Baryon form factors in a diquark-quark bound state description☆ , 1995, hep-ph/9502217.

[31]  C. Hanhart,et al.  Faddeev approach to the octet and decuplet baryons , 1995, nucl-th/9501021.

[32]  M. Birse,et al.  A nonlocal, covariant generalisation of the NJL model , 1994, hep-ph/9407336.

[33]  Efimov,et al.  Nambu-Jona-Lasinio model with the homogeneous background gluon field. , 1995, Physical review. D, Particles and fields.

[34]  Maris Analytic structure of the full fermion propagator in quenched and unquenched QED. , 1994, Physical review. D, Particles and fields.

[35]  C. Weiss Off-shell pion electromagnetic form factor from a gauge-invariant Nambu-Jona-Lasinio model , 1994, hep-ph/9404301.

[36]  A. Williams,et al.  Dyson-Schwinger equations and their application to hadronic physics , 1994, hep-ph/9403224.

[37]  Huang,et al.  Evidence for the role of instantons in hadron structure from lattice QCD. , 1993, Physical review. D, Particles and fields.

[38]  Huang,et al.  Nucleon solution of the Faddeev equation in the Nambu-Jona-Lasinio model. , 1993, Physical review. C, Nuclear physics.

[39]  J. Verbaarschot,et al.  Baryonic correlators in the random instanton vacuum , 1993, hep-ph/9306220.

[40]  R. Cahill,et al.  The analytic structure of quark propagators , 1992 .

[41]  H. Holties,et al.  DETERMINATION OF THE SINGULARITIES OF THE DYSON-SCHWINGER EQUATION FOR THE QUARK PROPAGATOR , 1992 .

[42]  R. Alkofer,et al.  Baryons as bound states of diquarks and quarks in the Nambu-Jona-Lasinio model☆ , 1992 .

[43]  S. Klevansky The Nambu-Jona-Lasinio model of quantum chromodynamics , 1992 .

[44]  R. Alkofer,et al.  A covariant model for dynamical chiral-symmetry breaking in QCD , 1991 .

[45]  Koch,et al.  Currents and Ward-Takahashi identities for nonlocal quantum field theories. , 1991, Physical review. C, Nuclear physics.

[46]  Ito,et al.  Current conservation and interaction currents with relativistic separable interactions. , 1991, Physical review. C, Nuclear physics.

[47]  Hiroshi Ito,et al.  Covariant quark model of pion structure , 1990 .

[48]  J. Terning,et al.  A nonlocal model of chiral dynamics , 1989 .

[49]  B. Magradze,et al.  Infrared finite quark propagator and chiral symmetry breaking in QCD , 1989 .

[50]  Stingl Erratum: Propagation properties and condensate formation of the confined Yang-Mills field , 1987, Physical review. D, Particles and fields.

[51]  D. Diakonov,et al.  Chiral theory of nucleons , 1988 .

[52]  Stingl Propagation properties and condensate formation of the confined Yang-Mills field. , 1986, Physical review. D, Particles and fields.

[53]  V. Petrov,et al.  Instanton-based vacuum from the Feynman variational principle , 1984 .

[54]  J. Cornwall Confinement and chiral-symmetry breakdown: Estimates of F π and of effective quark masses , 1980 .

[55]  D. Atkinson,et al.  Determination of the singularities of the electron propagator , 1979 .

[56]  R. Cutkosky,et al.  A NON-ANALYTIC S-MATRIX. , 1969 .