A new procedure for identifying the frame of the convex hull of a finite collection of points in multidimensional space

[1]  J. Gastwirth ON ROBUST PROCEDURES , 1966 .

[2]  R. Wets,et al.  ALGORITHMS FOR FRAMES AND LINEALITY SPACES OF CONES. , 1967 .

[3]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[4]  Roy E. Marsten,et al.  The Design of the XMP Linear Programming Library , 1981, TOMS.

[5]  Abraham Charnes,et al.  Preface to topics in data envelopment analysis , 1984, Ann. Oper. Res..

[6]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[7]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[8]  J. S. Welch,et al.  Finding duplicate rows in a linear programming model , 1986 .

[9]  Roger J.-B. Wets,et al.  Preprocessing in Stochastic Programming: The Case of Uncapacitated Networks , 1989, INFORMS J. Comput..

[10]  Sanjit Chatterjee,et al.  A note on finding extreme points in multivariate space , 1990 .

[11]  Panos M. Pardalos,et al.  Advances in Optimization and Parallel Computing , 1992 .

[12]  Martin Davies,et al.  Computer Science and Operations Research: New Developments in Their Interfaces , 1992 .

[13]  Roger J.-B. Wets,et al.  Preprocessing in Stochastic Programming: The Case of Linear Programs , 1992, INFORMS J. Comput..

[14]  José H. Dulá,et al.  Preprocessing Schemes and a Solution Method for the Convex Hull Problem in Multidimensional Space , 1992, Computer Science and Operations Research.

[15]  José H. Dulá Designing a majorization scheme for the recourse function in two-stage stochastic linear programming , 1993, Comput. Optim. Appl..

[16]  J. Dulá Geometry of optimal value functions with applications to redundancy in linear programming , 1994 .