Efficient water reduction with gallium phosphide nanowires

[1]  P. Notten,et al.  Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts. , 2014, Nano letters.

[2]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[3]  I. Chorkendorff,et al.  Formation of a p–n heterojunction on GaP photocathodes for H2 production providing an open-circuit voltage of 710 mV , 2014 .

[4]  Nathan S. Lewis,et al.  An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems , 2013 .

[5]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[6]  J. Mueller,et al.  Surface stability of Pt3Ni nanoparticulate alloy electrocatalysts in hydrogen adsorption. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[7]  Igor Levin,et al.  H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. , 2013, Nature materials.

[8]  Z. Mi,et al.  High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode , 2013, Nanotechnology.

[9]  K. Nam,et al.  Nanostructural dependence of hydrogen production in silicon photocathodes , 2013 .

[10]  Jem Jos Haverkort,et al.  Direct Band Gap Wurtzite Gallium Phosphide Nanowires , 2013, Nano letters.

[11]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[12]  Diana L. Huffaker,et al.  GaAs nanopillar-array solar cells employing in situ surface passivation , 2013, Nature Communications.

[13]  Quan Li,et al.  Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis , 2013 .

[14]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[15]  A. Fontcuberta i Morral,et al.  Single-nanowire solar cells beyond the Shockley–Queisser limit , 2013, Nature Photonics.

[16]  E. Bakkers,et al.  High yield transfer of ordered nanowire arrays into transparent flexible polymer films , 2012, Nanotechnology.

[17]  V. Kale,et al.  Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation. , 2012, Chemistry.

[18]  Yu-Lun Chueh,et al.  p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. , 2012, Angewandte Chemie.

[19]  P. Yang,et al.  Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis. , 2012, Nano letters.

[20]  S. Dahl,et al.  Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode. , 2012, Angewandte Chemie.

[21]  R. Eichberger,et al.  Epitaxial III-V films and surfaces for photoelectrocatalysis. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  Thomas F. Jaramillo,et al.  Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity , 2012 .

[23]  F. Bechstedt,et al.  Electronic bands of III-V semiconductor polytypes and their alignment , 2012, 1206.2209.

[24]  Xiaolin Zheng,et al.  Fabrication of flexible and vertical silicon nanowire electronics. , 2012, Nano letters.

[25]  R. Wallace,et al.  Optimization of the ammonium sulfide (NH4)2S passivation process on InSb(111)A , 2012 .

[26]  R. Opila,et al.  Wide Band Gap Gallium Phosphide Solar Cells , 2012, IEEE Journal of Photovoltaics.

[27]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[28]  D. Tsai,et al.  A New Approach to Solar Hydrogen Production: a ZnO–ZnS Solid Solution Nanowire Array Photoanode , 2011 .

[29]  H. Vrubel,et al.  Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water , 2011 .

[30]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[31]  Yichuan Ling,et al.  Sn-doped hematite nanostructures for photoelectrochemical water splitting. , 2011, Nano letters.

[32]  Nathan S Lewis,et al.  Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.

[33]  Bernd Witzigmann,et al.  Light absorption and emission in nanowire array solar cells. , 2010, Optics express.

[34]  K. Fujii,et al.  Photoelectrochemical Properties of the p−n Junction in and near the Surface Depletion Region of n-Type GaN , 2010 .

[35]  H. Atwater,et al.  Conformal GaP layers on Si wire arrays for solar energy applications , 2010 .

[36]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[37]  Bertrand J. Tremolet de Villers,et al.  Hybrid conjugated polymer solar cells using patterned GaAs nanopillars , 2010 .

[38]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor—Liquid—Solid-Grown Silicon Wire-Array Photocathodes. , 2010 .

[39]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[40]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[41]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[42]  M. Sunkara,et al.  WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production , 2009 .

[43]  N. Lewis,et al.  Macroporous Silicon as a Model for Silicon Wire Array Solar Cells , 2008 .

[44]  J. Nørskov,et al.  Theoretical Trends in Particle Size Effects for the Oxygen Reduction Reaction , 2007 .

[45]  Marc R. Knecht,et al.  Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. , 2006, Journal of the American Chemical Society.

[46]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[47]  Arthur J. Nozik,et al.  Physical Chemistry of Semiconductor−Liquid Interfaces , 1996 .

[48]  Eric L. Miller,et al.  Photoelectrochemical hydrogen production , 1995 .

[49]  Bruce A. Parkinson,et al.  On the efficiency and stability of photoelectrochemical devices , 1984 .

[50]  J. Woodall,et al.  Photoassisted Electrolysis of Water by Visible Irradiation of a p-Type Gallium Phosphide Electrode , 1977, Science.

[51]  Y. Nakato,et al.  PHOTO-ELECTROCHEMICAL BEHAVIORS OF SEMICONDUCTOR ELECTRODES COATED WITH THIN METAL FILMS , 1975 .

[52]  Z. Ren,et al.  Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. , 2014, Nature nanotechnology.

[53]  João Lúcio de Azevedo,et al.  Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water‐Splitting Photocathodes , 2014 .

[54]  T. Hannappel,et al.  Photoelectrochemical Conditioning of MOVPE p-InP Films for Light-Induced Hydrogen Evolution: Chemical, Electronic and Optical Properties , 2013 .

[55]  S. Maldonado,et al.  Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion , 2012 .

[56]  Michael Grätzel,et al.  Photoelectrochemical Hydrogen Production , 2012 .