Reprint of “Solid bitumen occurrences in the Arruda sub-basin (Lusitanian Basin, Portugal): Petrographic features”

[1]  T. Silva,et al.  The Mesozoic–Cenozoic organic facies in the Lower Tagus sub-basin (Lusitanian Basin, Portugal): Palynofacies and organic geochemistry approaches , 2014 .

[2]  H. Petersen,et al.  Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance , 2013 .

[3]  T. Silva,et al.  Paleoenvironmental characterization of a Jurassic sequence on the Bombarral sub-basin (Lusitanian basin, Portugal): Insights from palynofacies and organic geochemistry , 2013 .

[4]  T. Silva,et al.  Palynofacies and organic geochemistry of the Sinemurian carbonate deposits in the western Lusitanian Basin (Portugal): Coimbra and Água de Madeiros formations , 2013 .

[5]  J. G. Mendonça Filho,et al.  Palynofacies and TOC analysis of marine and non-marine sediments across the Middle–Upper Jurassic boundary in the central-northern Lusitanian Basin (Portugal) , 2013, Facies.

[6]  W. Abdullah,et al.  Geochemical characterization of solid bitumen (migrabitumen) in the Jurassic sandstone reservoir of the Tut Field, Shushan Basin, northern Western Desert of Egypt , 2012 .

[7]  T. Silva,et al.  Organic Facies: Palynofacies and Organic Geochemistry Approaches , 2012 .

[8]  J. G. Mendonça Filho,et al.  HIGH‐RESOLUTION STRATIGRAPHY, PALYNOFACIES AND SOURCE ROCK POTENTIAL OF THE ÁGUA DE MADEIROS FORMATION (LOWER JURASSIC), LUSITANIAN BASIN, PORTUGAL , 2012 .

[9]  R. Bertrand,et al.  Dispersed organic matter reflectance and thermal maturation in four hydrocarbon exploration wells in the Hudson Bay Basin: regional implications , 2012 .

[10]  T. Bolin,et al.  Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction , 2010 .

[11]  Tongwei Zhang,et al.  Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration , 2008 .

[12]  R. Wilson A reconnaissance study of Upper Jurassic sediments of the Lusitanian Basin , 2008 .

[13]  R. Littke,et al.  Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen , 2007 .

[14]  H. Volk,et al.  Biomarker evidence for two sources for solid bitumens in the Subu wells : Implications for the petroleum prospectivity of the East Papuan Basin , 2007 .

[15]  P. Kwiatek,et al.  Reactive polar precipitation via ether cross-linkage: A new mechanism for solid bitumen formation , 2006 .

[16]  Hugo Matias,et al.  The structural and sedimentary evolution of the Arruda and Lower Tagus sub-basins, Portugal , 2005 .

[17]  V. Wright,et al.  The Middle–Late Jurassic forced regression and disconformity in central Portugal: eustatic, tectonic and climatic effects on a carbonate ramp system , 2002 .

[18]  T. Alves,et al.  Jurassic tectono-sedimentary evolution of the Northern Lusitanian Basin (offshore Portugal) , 2002 .

[19]  A. Klaus,et al.  Proceedings of the Ocean Drilling Program, Scientific Results , 2001 .

[20]  P. Nederlof,et al.  Pyrobitumen occurrence and formation in a Cambro–Ordovician sandstone reservoir, Fahud Salt Basin, North Oman , 2000 .

[21]  S. Teerman,et al.  Geochemical comparison of reservoir solid bitumens with diverse origins , 1998 .

[22]  L. Stasiuk The origin of pyrobitumens in upper Devonian Leduc formation gas reservoirs, Alberta, Canada: an optical and EDS study of oil to gas transformation , 1997 .

[23]  Yuzhuang Sun,et al.  Differences in the depositional environment of basal Zechstein in southwest Poland: implication for base metal mineralization , 1995 .

[24]  J. Castaño,et al.  Maturation and bulk chemical properties of a suite of solid hydrocarbons , 1995 .

[25]  R. Tyson Sedimentary Organic Matter , 1995 .

[26]  C. Riediger Solid bitumen reflectance and Rock-Eval Tmax as maturation indices: an example from the “Nordegg Member”, Western Canada Sedimentary Basin , 1993 .

[27]  R. Bertrand Standardization of solid bitumen reflectance to vitrinite in some paleozoic sequences of Canada , 1993 .

[28]  D. Kirste,et al.  Optical and Geochemical Classification of Pine Point Bitumens and Evidence for Their Origin from Two Separate Source Rocks , 1993 .

[29]  B. Krooss,et al.  Quantification of loss of calcite, pyrite, and organic matter due to weathering of Toarcian black shales and effects on kerogen and bitumen characteristics , 1991 .

[30]  T. Gentzis,et al.  A Review of the Use of Bitumen Reflectance in Hydrocarbon Exploration with Examples from Melville Island, Arctic Canada , 1990 .

[31]  R. Bertrand Correlations among the reflectances of vitrinite, chitinozoans, graptolites and scolecodonts , 1990 .

[32]  R. Leinfelder,et al.  Seismic and sedimentologic features of Oxfordian-Kimmeridgian syn-rift sediments on the eastern margin of the Lusitanian Basin , 1989 .

[33]  H. Jacob Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”) , 1989 .

[34]  D. Welte,et al.  Petroleum Formation and Occurrence , 1989 .

[35]  C. Montenat,et al.  Mesozoic Evolution of the Lusitanian Basin: Comparison with the Adjacent Margin , 1988 .

[36]  R. Bertrand,et al.  Chitinozoan, Graptolite, and Scolecodont Reflectance As An Alternative to Vitrinite and Pyrobitumen Reflectance in Ordovician and Silurian Strata, Anticosti Island, Quebec, Canada , 1987 .

[37]  J. Curiale Origin of solid bitumens, with emphasis on biological marker results , 1986 .

[38]  J. Curiale,et al.  Sterane distribution of solid bitumen pyrolyzates. Changes with biodegradation of crude oil in the Ouachita Mountains, Oklahoma , 1983 .

[39]  D. Welte,et al.  Kerogen: Composition and Classification , 1978 .