A "Smart" ¹²⁸Xe NMR Biosensor for pH-Dependent Cell Labeling.

Here we present a "smart" xenon-129 NMR biosensor that undergoes a peptide conformational change and labels cells in acidic environments. To a cryptophane host molecule with high Xe affinity, we conjugated a 30mer EALA-repeat peptide that is α-helical at pH 5.5 and disordered at pH 7.5. The (129)Xe NMR chemical shift at room temperature was strongly pH-dependent (Δδ = 3.4 ppm): δ = 64.2 ppm at pH 7.5 vs δ = 67.6 ppm at pH 5.5, where Trp(peptide)-cryptophane interactions were evidenced by Trp fluorescence quenching. Using hyper-CEST NMR, we probed peptidocryptophane detection limits at low-picomolar (10(-11) M) concentration, which compares favorably to other NMR pH reporters at 10(-2)-10(-3) M. Finally, in biosensor-HeLa cell solutions, peptide-cell membrane insertion at pH 5.5 generated a 13.4 ppm downfield cryptophane-(129)Xe NMR chemical shift relative to pH 7.5 studies. This highlights new uses for (129)Xe as an ultrasensitive probe of peptide structure and function, along with potential applications for pH-dependent cell labeling in cancer diagnosis and treatment.

[1]  Robert E Lenkinski,et al.  PARACEST agents: modulating MRI contrast via water proton exchange. , 2003, Accounts of chemical research.

[2]  À. Muñoz-Castro Behavior of [2.2]paracyclophane in magnetic fields: A survey of the magnetic response properties from chemical shift tensor maps , 2011 .

[3]  Andrew Tsourkas,et al.  pH-titratable superparamagnetic iron oxide for improved nanoparticle accumulation in acidic tumor microenvironments. , 2011, ACS nano.

[4]  R.J. Gillies,et al.  pH imaging , 2004, IEEE Engineering in Medicine and Biology Magazine.

[5]  R. Murphy,et al.  Design of a pH-sensitive pore-forming peptide with improved performance. , 2008, The journal of peptide research : official journal of the American Peptide Society.

[6]  F. Szoka,et al.  pH-dependent bilayer destabilization by an amphipathic peptide. , 1987, Biochemistry.

[7]  Eva K. Lee,et al.  Systems Biology of Seasonal Influenza Vaccination in Humans , 2011, Nature Immunology.

[8]  C. Freund,et al.  Multichannel MRI labeling of mammalian cells by switchable nanocarriers for hyperpolarized xenon. , 2014, Nano letters.

[9]  A. Pines,et al.  HyperCEST detection of a 129Xe‐based contrast agent composed of cryptophane‐A molecular cages on a bacteriophage scaffold , 2013, Magnetic resonance in medicine.

[10]  H. Benyamini,et al.  Formation and characterization of stable human serum albumin-tris-malonic acid [C60]fullerene complex. , 2005, Bioconjugate chemistry.

[11]  L. Dubois,et al.  Water soluble cryptophanes showing unprecedented affinity for xenon: candidates as NMR-based biosensors. , 2006, Journal of the American Chemical Society.

[12]  I. Dmochowski,et al.  Cryptophane-Folate Biosensor for 129Xe NMR , 2014, Bioconjugate chemistry.

[13]  P. Wahl,et al.  pH dependence of the fluorescence decay of tryptophan. , 1970, Biochemistry.

[14]  Vipul R Sheth,et al.  Measuring in vivo tumor pHe with CEST‐FISP MRI , 2012, Magnetic resonance in medicine.

[15]  F. Gallagher,et al.  Imaging pH with hyperpolarized 13C , 2011, NMR in biomedicine.

[16]  T. Delair,et al.  A cryptophane biosensor for the detection of specific nucleotide targets through xenon NMR spectroscopy. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  U. Resch‐Genger,et al.  Biomembrane interactions of functionalized cryptophane-A: combined fluorescence and 129Xe NMR studies of a bimodal contrast agent. , 2013, Chemistry.

[18]  J. Bulte,et al.  New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI , 2008, Magnetic resonance in medicine.

[19]  Alan P Koretsky,et al.  MRI detection of single particles for cellular imaging. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. Pines,et al.  Xenon-based molecular sensors in lipid suspensions. , 2010, Journal of magnetic resonance.

[21]  Comparison of divalent transition metal ion paraCEST MRI contrast agents , 2014, JBIC Journal of Biological Inorganic Chemistry.

[22]  You Han Bae,et al.  Recent progress in tumor pH targeting nanotechnology. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[23]  Gregory S Karczmar,et al.  MRI of the tumor microenvironment , 2002, Journal of magnetic resonance imaging : JMRI.

[24]  D. Engelman,et al.  pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable phalloidin toxin inhibits cancer cell proliferation , 2010, Proceedings of the National Academy of Sciences.

[25]  J. Dutasta,et al.  A sensitive zinc-activated 129Xe MRI probe. , 2012, Angewandte Chemie.

[26]  T. Troxler,et al.  Substituent effects on xenon binding affinity and solution behavior of water-soluble cryptophanes. , 2009, Journal of the American Chemical Society.

[27]  J. Dutasta,et al.  A cryptophane core optimized for xenon encapsulation. , 2007, Journal of the American Chemical Society.

[28]  D. Christianson,et al.  Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase. , 2009, Journal of the American Chemical Society.

[29]  Hakho Lee,et al.  Magnetic nanoparticles for biomedical NMR-based diagnostics , 2010, Beilstein journal of nanotechnology.

[30]  Y. Ko,et al.  Water soluble cucurbit[6]uril derivative as a potential Xe carrier for 129Xe NMR-based biosensors. , 2008, Chemical communications.

[31]  A. Pines,et al.  Functionalized xenon as a biosensor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  I. Dmochowski,et al.  Cell-compatible, integrin-targeted cryptophane-129Xe NMR biosensors. , 2011, Chemical science.

[33]  J. Dutasta,et al.  A water-soluble Xe@cryptophane-111 complex exhibits very high thermodynamic stability and a peculiar (129)Xe NMR chemical shift. , 2010, Journal of the American Chemical Society.

[34]  A. Tsourkas,et al.  Gd-labeled glycol chitosan as a pH-responsive magnetic resonance imaging agent for detecting acidic tumor microenvironments. , 2013, Journal of medicinal chemistry.

[35]  J. Dutasta,et al.  Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: the transferrin case. , 2011, Bioorganic & medicinal chemistry.

[36]  Christian Hilty,et al.  Molecular Imaging Using a Targeted Magnetic Resonance Hyperpolarized Biosensor , 2006, Science.

[37]  T. Meade,et al.  Cell Labeling via Membrane-Anchored Lipophilic MR Contrast Agents , 2014, Bioconjugate chemistry.

[38]  I. Dmochowski,et al.  Thermodynamics of Xenon Binding to Cryptophane in Water and Human Plasma [J. Am. Chem. Soc. 2007, 129, 9262−9263]. , 2007 .

[39]  Yu Sui,et al.  Spectroscopic study on the interaction of pristine C60 and serum albumins in solution , 2012, Nanoscale Research Letters.

[40]  L. Laureano-Pérez,et al.  Measurement of radon and xenon binding to a cryptophane molecular host , 2011, Proceedings of the National Academy of Sciences.

[41]  R. Gillies,et al.  Imaging the extracellular pH of tumors by MRI after injection of a single cocktail of T1 and T2 contrast agents , 2011, NMR in biomedicine.

[42]  I. Dmochowski,et al.  Peptide-mediated cellular uptake of cryptophane. , 2008, Bioconjugate chemistry.

[43]  A. Kondo,et al.  A display of pH-sensitive fusogenic GALA peptide facilitates endosomal escape from a Bio-nanocapsule via an endocytic uptake pathway , 2014, Journal of Nanobiotechnology.

[44]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[45]  C. Freund,et al.  Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization. , 2014, Angewandte Chemie.

[46]  F. Szoka,et al.  GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. , 2004, Advanced drug delivery reviews.

[47]  Patrick Berthault,et al.  Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes. , 2010, Chemistry.

[48]  V. Bajaj,et al.  A xenon-based molecular sensor assembled on an MS2 viral capsid scaffold. , 2010, Journal of the American Chemical Society.

[49]  D. Engelman,et al.  pHLIP-mediated translocation of membrane-impermeable molecules into cells. , 2009, Chemistry & biology.

[50]  H. Rose,et al.  Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans. , 2015, Angewandte Chemie.

[51]  M. Goulian,et al.  Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR. , 2014, Chemical science.

[52]  F. Szoka,et al.  Orientation of the pore-forming peptide GALA in POPC vesicles determined by a BODIPY-avidin/biotin binding assay. , 1999, Biophysical journal.

[53]  Robert J Gillies,et al.  High resolution pHe imaging of rat glioma using pH‐dependent relaxivity , 2006, Magnetic resonance in medicine.

[54]  I. Dmochowski,et al.  Designing 129Xe NMR biosensors for matrix metalloproteinase detection. , 2006, Journal of the American Chemical Society.

[55]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[56]  Suresh Neethirajan,et al.  A novel microfluidic wound model for testing antimicrobial agents against Staphylococcus pseudintermedius biofilms , 2014, Journal of Nanobiotechnology.

[57]  Yana K Reshetnyak,et al.  A novel technology for the imaging of acidic prostate tumors by positron emission tomography. , 2009, Cancer research.

[58]  K. Kinzler,et al.  A diaCEST MRI approach for monitoring liposomal accumulation in tumors. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[59]  D. Engelman,et al.  pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents , 2010, Molecular membrane biology.

[60]  S. Futaki,et al.  An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives , 2008, Analytical and bioanalytical chemistry.

[61]  Masaya Takahashi,et al.  A novel class of polymeric pH-responsive MRI CEST agents. , 2013, Chemical communications.

[62]  O. Togao,et al.  Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes. , 2013, Angewandte Chemie.

[63]  T. Andresen,et al.  A GALA lipopeptide mediates pH- and membrane charge dependent fusion with stable giant unilamellar vesicles , 2012 .

[64]  R Weissleder,et al.  Magnetically labeled cells can be detected by MR imaging , 1997, Journal of magnetic resonance imaging : JMRI.

[65]  Peter Caravan,et al.  Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. , 2006, Chemical Society reviews.

[66]  Xenon NMR Spectroscopy , 1994 .

[67]  I. Dmochowski,et al.  Synthesis of enantiopure, trisubstituted cryptophane-A derivatives. , 2012, Organic letters.

[68]  A. Collet,et al.  Synthesis of a (D3)-bis(cyclotriveratrylenyl) macrocage by stereospecific replication of a (C3)-subunit , 1981 .

[69]  Robert J. Gillies,et al.  Tumor pH and Its Measurement , 2010, The Journal of Nuclear Medicine.

[70]  Pernille R. Jensen,et al.  Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate , 2008, Nature.

[71]  A. Hatefi,et al.  A recombinant biopolymeric platform for reliable evaluation of the activity of pH-responsive amphiphile fusogenic peptides. , 2013, Biomacromolecules.

[72]  B. Rutt,et al.  Application of the static dephasing regime theory to superparamagnetic iron‐oxide loaded cells , 2002, Magnetic resonance in medicine.

[73]  P. Z. Sun,et al.  A General MRI-CEST Ratiometric Approach for pH Imaging: Demonstration of in Vivo pH Mapping with Iobitridol , 2014, Journal of the American Chemical Society.

[74]  P. Tang,et al.  Amphiphilic sites for general anesthetic action? Evidence from 129Xe-[1H] intermolecular nuclear Overhauser effects. , 1997, Biochimica et biophysica acta.

[75]  I. Dmochowski,et al.  Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements. , 2012, Analytical chemistry.

[76]  Junfa Yin,et al.  Interaction of Human Serum Album and C60 Aggregates in Solution , 2011, International journal of molecular sciences.

[77]  R. Lenkinski,et al.  CEST and PARACEST MR contrast agents , 2010, Acta radiologica.

[78]  Seok-Yong Lee,et al.  Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy. , 2002, Journal of molecular biology.