Active glass–polymer superlattice structure for photonic integration

We propose an all-laser processing approach allowing controlled growth of organic-inorganic superlattice structures of rare-earth ion doped tellurium-oxide-based glass and optically transparent polydimethyl siloxane (PDMS) polymer; the purpose of which is to illustrate the structural and thermal compatibility of chemically dissimilar materials at the nanometer scale. Superlattice films with interlayer thicknesses as low as 2 nm were grown using pulsed laser deposition (PLD) at low temperatures (100 °C). Planar waveguides were successfully patterned by femtosecond-laser micro-machining for light propagation and efficient Er(3+)-ion amplified spontaneous emission (ASE). The proposed approach to achieve polymer-glass integration will allow the fabrication of efficient and durable polymer optical amplifiers and lossless photonic devices. The all-laser processing approach, discussed further in this paper, permits the growth of films of a multitude of chemically complex and dissimilar materials for a range of optical, thermal, mechanical and biological functions, which otherwise are impossible to integrate via conventional materials processing techniques.

[1]  Animesh Jha,et al.  Tellurite Glasses for Broadband Amplifiers and Integrated Optics , 2002 .

[2]  B. Bartolo,et al.  Advances in nonradiative processes in solids , 1991 .

[3]  A. Ostendorf,et al.  Polarization effects in ultrashort-pulse laser drilling , 1999 .

[4]  S. Ovshinsky,et al.  Properties of amorphous semiconducting multilayer films , 1984 .

[5]  Raouf El-Mallawany,et al.  Tellurite glasses: Part 2. Anelastic, phase separation, Debye temperature and thermal properties , 1999 .

[6]  M. Zervas,et al.  Growth of crystalline garnet mixed films, superlattices and multilayers for optical applications via shuttered combinatorial pulsed laser deposition. , 2010, Optics express.

[7]  I. Schuller New class of layered materials , 1980 .

[8]  John R. Arthur Molecular beam epitaxy , 2002 .

[9]  Genaro Zavala,et al.  Mechanism of and Defect Formation in the Self-Assembly of Polymeric Polycation−Montmorillonite Ultrathin Films , 1997 .

[10]  S. Wiederhorn Fracture Surface Energy of Soda-Lime Glass , 1966 .

[11]  Heinz Kiessig Interferenz von Röntgenstrahlen an dünnen Schichten , 1931 .

[12]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[13]  Jenny Clark,et al.  Organic photonics for communications , 2010 .

[14]  B. Gale,et al.  A monolithic PDMS waveguide system fabricated using soft-lithography techniques , 2005, Journal of Lightwave Technology.

[15]  John A. Rogers,et al.  Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process , 2003 .

[16]  S. Mcknight,et al.  Optically Transparent Nanoporous Glasspolymer Composites , 2006 .

[17]  H. Kiessig Interferenz von Röntgenstrahlen an dünnen Schichten , 1930, Naturwissenschaften.

[18]  A. Jha,et al.  A parametric study of Er3+-ions doped Phospho-tellurite glass thin films by pulsed laser deposition , 2010 .

[19]  N. Kotov,et al.  Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies , 2004 .

[20]  M. Sumption,et al.  AFRL-PR-WP-TP-2006-205 ADDITION OF NANOPARTICLE DISPERSIONS TO ENHANCE FLUX PINNING OF THE YBa 2 Cu 3 O 7 – x SUPERCONDUCTOR , 2004 .

[21]  A. Wonfor,et al.  A terabit capacity passive polymer optical backplane based on a  novel meshed waveguide architecture , 2009 .

[22]  E. Kramer,et al.  Block copolymers with low surface energy segments: siloxane- and perfluoroalkane-modified blocks , 1995 .

[23]  M. Sumption,et al.  Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor , 2004, Nature.

[24]  G. Bauer,et al.  9.3.1 Molecular beam epitaxy , 2013 .

[25]  Kai Su,et al.  Siloxane materials for optical applications , 2006, International Commission for Optics.

[26]  I. White,et al.  Tellurite glass thin films on silica and polymer using UV (193 nm) pulsed laser ablation , 2011 .

[27]  S. Stankovich,et al.  Graphene-silica composite thin films as transparent conductors. , 2007, Nano letters.

[28]  John L. Reno,et al.  Monolithically integrated solid-state terahertz transceivers , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[29]  D. Kwong,et al.  Zero phase delay in negative-refractive-index photonic crystal superlattices , 2011 .

[30]  M. Okoshi,et al.  Pulsed Laser Deposition of SiO2 Thin Films with Dimethylpolysiloxane Targets , 2002 .

[31]  Jianji Dong,et al.  Dual-Pumped Tellurite Fiber Amplifier and Tunable Laser Using Er$^{3+}$ /Ce$^{3+}$ Codoping Scheme , 2011, IEEE Photonics Technology Letters.

[32]  Roberto Osellame,et al.  Micromachining of photonic devices by femtosecond laser pulses , 2008 .