Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: Design and analysis

Recently, highly nonlinear Ga-Sb-S chalcogenide glasses have been reported for promising mid-infrared applications such as thermal imaging, nonlinear optics, and infrared lasers. However, the nonlinear optical fiber and waveguide geometries in Ga-Sb-S chalcogenide glasses have not been reported to date. In this paper, we numerically investigate the design of the dual zero dispersion engineered rib waveguide in Ga8Sb32S60 chalcogenide glass by employing MgF2 glass as a lower and upper cladding material. The waveguide structure possesses nonlinearity as high as 24 100 W−1 Km−1 and 14 000 W−1 Km−1 at 2050 and 2800 nm, respectively. The reported waveguide is able to generate a mid-infrared supercontinuum spectrum spanning from 1000 to 7800 nm when it pumped with 97 femtosecond laser pulses of a peak power of 1 kW at 2050 nm. We have also showed that the supercontinuum spectrum can be extended to the spectral range of 1000–9700 nm using pumping with 497 fs pulses of a peak power of 6.4 kW at 2800 nm. To the be...

[1]  Steve Madden,et al.  Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide. , 2008, Optics express.

[2]  G Korn,et al.  Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. , 2002, Physical review letters.

[3]  Ravindra Kumar Sinha,et al.  Broadband Mid-Infrared Supercontinuum Spectra Spanning 2–15 μm Using As2Se3 Chalcogenide Glass Triangular-Core Graded-Index Photonic Crystal Fiber , 2015, Journal of Lightwave Technology.

[4]  J. Świderski,et al.  Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier , 2013 .

[5]  Anping Yang,et al.  Ga–Sb–S Chalcogenide Glasses for Mid‐Infrared Applications , 2016 .

[6]  M. J. Dodge,et al.  Refractive properties of magnesium fluoride. , 1984, Applied optics.

[7]  R. Osellame,et al.  Waveguide fabrication and supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[8]  Steve Madden,et al.  Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide. , 2012, Optics letters.

[9]  Yi Yu,et al.  Mid-infrared supercontinuum generation in chalcogenides , 2013 .

[10]  Bora Ung,et al.  Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. , 2010, Optics express.

[11]  L. Brilland,et al.  Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources. , 2010, Optics express.

[12]  Jasbinder S. Sanghera,et al.  Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. , 2010, Optics express.

[13]  Ole Bang,et al.  IR microscopy utilizing intense supercontinuum light source. , 2012, Optics express.

[14]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[15]  Shuangchen Ruan,et al.  Numerical simulation on the coherent time-critical 2–5 μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile , 2013 .

[16]  C. Madsen,et al.  Optical characterization of a-As2S3 thin films prepared by magnetron sputtering , 2010 .

[17]  Dan Zhao,et al.  Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber. , 2011, Optics express.

[18]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[19]  B. M. A. Rahman,et al.  Mid-infrared supercontinuum generation using dispersion-engineered Ge(11.5)As(24)Se(64.5) chalcogenide channel waveguide. , 2015, Optics express.

[20]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[21]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[22]  Sergei K. Turitsyn,et al.  Optical spectral broadening and supercontinuum generation in telecom applications , 2006 .

[23]  Fritz Keilmann,et al.  Time-domain mid-infrared frequency-comb spectrometer. , 2004, Optics letters.

[24]  Lionel C. Kimerling,et al.  Nonlinear characterization of GeSbS chalcogenide glass waveguides , 2016, Scientific Reports.

[25]  D. Hewak,et al.  Deposition and characterization of germanium sulphide glass planar waveguides. , 2004, Optics express.

[26]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[27]  Robert S. Windeler,et al.  Coulomb and carrier-activation dynamics of resonantly excited InAs/GaAs quantum dots in two-color pump-probe experiments , 2003 .

[28]  B. Rahman,et al.  Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide , 2016 .

[29]  M D Pelusi,et al.  Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration. , 2007, Optics express.

[30]  Vladimir Shiryaev,et al.  Trends and prospects for development of chalcogenide fibers for mid-infrared transmission , 2013 .

[31]  Ingmar Hartl,et al.  Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. , 2012, Optics express.

[32]  Kathleen Richardson,et al.  Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. , 2007, Optics express.

[33]  Wu Yuan,et al.  2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber , 2013, 1308.5910.

[34]  Stuart D. Jackson,et al.  Ultrafast pulses from a mid-infrared fiber laser. , 2015, Optics letters.

[35]  Ajeet Kumar,et al.  Design and modelling of dispersion-engineered rib waveguide for ultra broadband mid-infrared supercontinuum generation , 2017 .

[36]  Ravindra Kumar Sinha,et al.  Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: A new design and analysis , 2015 .