Numerical methods for limit and shakedown analysis : deterministic and probabilistic problems

[1]  D. Weichert,et al.  The numerical assessment of elastic-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition , 1988 .

[2]  Michał Kleiber,et al.  On a numerical approach to shakedown analysis of structures , 1980 .

[3]  A theoretical investigation of the yield point loading of a square plate with a central circular hole , 1954 .

[4]  José Herskovits,et al.  An iterative algorithm for limit analysis with nonlinear yield functions , 1993 .

[5]  A fully automatic force method for the optimal shakedown design of frames , 1999 .

[6]  Wei H. Yang A variational principle and an algorithm for limit analysis of beams and plates , 1982 .

[7]  Xi-Qiao Feng,et al.  A global/local shakedown analysis method of elastoplastic cracked structures 1 1 Dedicated to Profes , 1999 .

[8]  P. Gilles,et al.  Practical estimation of the plastic collapse limit of curved pipes subjected to complex loading , 1999 .

[9]  V. Carvelli,et al.  Shakedown analysis of defective pressure vessels by a kinematic approach , 1999 .

[10]  Ming-Wan Lu,et al.  An algorithm for plastic limit analysis , 1995 .

[11]  Alternative approach to shakedown as a solution of a min-max problem , 1992 .

[12]  S. Caddemi,et al.  Shakedown problems for material models with internal variables , 1991 .

[13]  Giulio Maier,et al.  Static shakedown theorems in piecewise linearized poroplasticity , 1998 .

[14]  Philip G. Hodge,et al.  Limit Analysis of Structures at Thermal Cycling , 1980 .

[15]  H. Nguyen-Dang,et al.  Limit analysis of cracked structures by mathematical programming and finite element technique , 1999 .

[16]  G. Jiang Non‐linear finite element formulation of kinematic limit analysis , 1995 .

[17]  J. Kamenjarzh,et al.  On kinematic method in shakedown theory. I: Duality of extremum problems , 1994 .

[18]  D. Weichert On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures , 1986 .

[19]  G. Borino Consistent shakedown theorems for materials with temperature dependent yield functions , 2000 .

[20]  H. Stumpf Theoretical and computational aspects in the shakedown analysis of finite elastoplasticity , 1993 .

[21]  Ai-Min Yan,et al.  Kinematical shakedown analysis with temperature‐dependent yield stress , 2001 .

[22]  Yuan-Gao Zhang,et al.  An iteration algorithm for kinematic shakedown analysis , 1995 .

[23]  Genbao Zhang,et al.  Shakedown with nonlinear strain-hardening including structural computation using finite element method , 1992 .

[24]  L. Palizzolo,et al.  Optimal shakedown design of beam structures , 1994 .

[25]  Giulio Maier,et al.  Shakedown analysis of elastoplastic structures: A review of recent developments , 1981 .

[26]  Dieter Weichert,et al.  Inelastic Analysis of Structures under Variable Loads: Theory and Engineering Applications , 2001 .

[27]  Jacov A. Kamenjarzh,et al.  Limit Analysis of Solids and Structures , 1996 .

[28]  Michael L. Overton,et al.  An Efficient Primal-Dual Interior-Point Method for Minimizing a Sum of Euclidean Norms , 2000, SIAM J. Sci. Comput..

[29]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[30]  Dieter Weichert,et al.  SHAKEDOWN ANALYSIS OF COMPOSITES , 1999 .

[31]  Dieter Weichert,et al.  Numerical shakedown analysis of damaged structures , 1998 .

[32]  D. Weichert,et al.  Influence of geometrical nonlinearities on the shakedown of damaged structures , 1998 .

[33]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[34]  Vu Duc Khoi DUAL LIMIT AND SHAKEDOWN ANALYSIS OF STRUCTURES , 2001 .

[35]  W. T. Koiter General theorems for elastic plastic solids , 1960 .

[36]  Knud D. Andersen,et al.  Computation of collapse states with von Mises type yield condition , 1998 .

[37]  Giulio Maier,et al.  Shakedown theorems for some classes of nonassociative hardening elastic-plastic material models , 1995 .

[38]  Dieter Weichert,et al.  An extension of the static shakedown theorem to inelastic cracked structures , 1999 .

[39]  Yuzhe Liu,et al.  A numerical method for plastic limit analysis of 3-D structures , 1995 .

[40]  Michael L. Overton,et al.  Computing Limit Loads by Minimizing a Sum of Norms , 1998, SIAM J. Sci. Comput..

[41]  Ai-Min Yan,et al.  AN ENHANCED PIPE ELBOW ELEMENT : APPLICATION IN PLASTIC LIMIT ANALYSIS OF PIPE STRUCTURES , 1999 .

[42]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[43]  M. D. Xue,et al.  Lower-bound shakedown analysis of axisymmetric structures subjected to variable mechanical and thermal loads , 1997 .

[44]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[45]  Jose Luis Silveira,et al.  Extremum principles for bounds to shakedown loads , 1999 .

[46]  H. Nguyen-Dang,et al.  Direct Finite Element Kinematical Approaches in Limit and Shakedown Analysis of Shells and Elbows , 2000 .

[47]  Knud D. Andersen An Efficient Newton Barrier Method for Minimizing a Sum of Euclidean Norms , 1993, SIAM J. Optim..