Unraveling Hematopoiesis through the Lens of Genomics

[1]  Matthew S. Lebo,et al.  Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions , 2020, Nature Communications.

[2]  Thomas Höfer,et al.  Resolving Fates and Single-Cell Transcriptomes of Hematopoietic Stem Cell Clones by PolyloxExpress Barcoding. , 2020, Cell stem cell.

[3]  Zachary D. Chiang,et al.  Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling , 2020, Nature Biotechnology.

[4]  J. Lancaster,et al.  Association of a Polygenic Risk Score With Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast Cancer Genes , 2020, JAMA network open.

[5]  Keith W. Muir,et al.  Whole-genome sequencing of patients with rare diseases in a national health system , 2020, Nature.

[6]  Joseph N. Pucella,et al.  The Source and Dynamics of Adult Hematopoiesis: Insights from Lineage Tracing. , 2020, Annual review of cell and developmental biology.

[7]  V. Sankaran,et al.  In The Blood: Connecting Variant to Function In Human Hematopoiesis. , 2020, Trends in genetics : TIG.

[8]  S. Orkin,et al.  An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression Profiles in Single Cells , 2020, Cell.

[9]  Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis , 2020, Nature Cell Biology.

[10]  B. Göttgens,et al.  Iterative Single-Cell Analyses Define the Transcriptome of the First Functional Hematopoietic Stem Cells , 2020, Cell reports.

[11]  Rafael C. Schulman,et al.  DNA methylation disruption reshapes the hematopoietic differentiation landscape , 2020, Nature Genetics.

[12]  Amos Tanay,et al.  Dissecting cellular crosstalk by sequencing physically interacting cells , 2020, Nature Biotechnology.

[13]  David E. Muench,et al.  Mouse models of neutropenia reveal progenitor-stage-specific defects , 2020, Nature.

[14]  F. Bushman,et al.  Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs. , 2020, Blood.

[15]  William J. Astle,et al.  The Polygenic and Monogenic Basis of Blood Traits and Diseases , 2020, Cell.

[16]  Cancer Etiology , 2020, Definitions.

[17]  William J. Astle,et al.  Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations , 2020, Cell.

[18]  Mark I. McCarthy,et al.  A brief history of human disease genetics , 2020, Nature.

[19]  Aaron M. Newman,et al.  Single-cell transcriptional diversity is a hallmark of developmental potential , 2019, Science.

[20]  E. Lander,et al.  Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation , 2018, Nature Genetics.

[21]  Allon M. Klein,et al.  Lineage tracing on transcriptional landscapes links state to fate during differentiation , 2018, Science.

[22]  A. Pombo,et al.  Methods for mapping 3D chromosome architecture , 2019, Nature Reviews Genetics.

[23]  C. Lareau,et al.  Longitudinal assessment of clonal mosaicism in humanhematopoiesis via mitochondrial mutation tracking. , 2019, Blood advances.

[24]  Matthew S. Lebo,et al.  Polygenic background modifies penetrance of monogenic variants conferring risk for coronary artery disease, breast cancer, or colorectal cancer , 2019 .

[25]  Bing Liu,et al.  Single-Cell RNA Sequencing Resolves Spatiotemporal Development of Pre-thymic Lymphoid Progenitors and Thymus Organogenesis in Human Embryos. , 2019, Immunity.

[26]  S. Gabriel,et al.  Genetic Interleukin 6 Signaling Deficiency Attenuates Cardiovascular Risk in Clonal Hematopoiesis , 2019, Circulation.

[27]  B. Ebert,et al.  Clonal hematopoiesis in human aging and disease , 2019, Science.

[28]  Alex Khodaverdian,et al.  Inference of single-cell phylogenies from lineage tracing data using Cassiopeia , 2019, Genome Biology.

[29]  M. Daly,et al.  Genetic predisposition to myeloproliferative neoplasms implicates hematopoietic stem cell biology , 2019, bioRxiv.

[30]  Ivana V. Yang,et al.  Inherited Causes of Clonal Hematopoiesis of Indeterminate Potential in TOPMed Whole Genomes , 2019, bioRxiv.

[31]  David McDonald,et al.  Decoding human fetal liver haematopoiesis , 2019, Nature.

[32]  B. Liu,et al.  Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing , 2019, Cell Research.

[33]  Patrick M. Helbling,et al.  Combined single-cell and spatial transcriptomics reveals the molecular, cellular and spatial bone marrow niche organization , 2019, Nature Cell Biology.

[34]  Erik L. Bao,et al.  The genetics of human hematopoiesis and its disruption in disease , 2019, EMBO molecular medicine.

[35]  Joseph M. Scandura,et al.  Genotyping of Transcriptomes links somatic mutations and cell identity , 2019, Nature.

[36]  Monika S. Kowalczyk,et al.  A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia , 2019, Cell.

[37]  Aviv Regev,et al.  Transcriptional States and Chromatin Accessibility Underlying Human Erythropoiesis , 2019, Cell Reports.

[38]  Samuel L. Wolock,et al.  A comprehensive single cell transcriptional landscape of human hematopoietic progenitors , 2019, Nature Communications.

[39]  R. Satija,et al.  The bone marrow microenvironment at single-cell resolution , 2019, Nature.

[40]  A. Shimamura,et al.  Genetic predisposition to MDS: clinical features and clonal evolution. , 2019, Blood.

[41]  Martin J. Aryee,et al.  Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics , 2019, Cell.

[42]  S. De,et al.  FERMI: A Novel Method for Sensitive Detection of Rare Mutations in Somatic Tissue , 2019, G3: Genes, Genomes, Genetics.

[43]  P. Frenette,et al.  Haematopoietic stem cell activity and interactions with the niche , 2019, Nature Reviews Molecular Cell Biology.

[44]  E. Bresnick,et al.  Transcription factor mutations as a cause of familial myeloid neoplasms. , 2019, The Journal of clinical investigation.

[45]  Berthold Göttgens,et al.  A single-cell molecular map of mouse gastrulation and early organogenesis , 2019, Nature.

[46]  U. Banerjee,et al.  Drosophila as a Genetic Model for Hematopoiesis , 2019, Genetics.

[47]  Guo-Cheng Yuan,et al.  CUT&RUNTools: a flexible pipeline for CUT&RUN processing and footprint analysis , 2019, Genome Biology.

[48]  Sandy L. Klemm,et al.  Chromatin accessibility and the regulatory epigenome , 2019, Nature Reviews Genetics.

[49]  Derrick J. Rossi,et al.  Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging , 2018, eLife.

[50]  James M. Olson,et al.  Automated in situ chromatin profiling efficiently resolves cell types and gene regulatory programs , 2018, Epigenetics & Chromatin.

[51]  Howard Y. Chang,et al.  Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA , 2018, bioRxiv.

[52]  F. Camargo,et al.  Somatic Mutations Reveal Lineage Relationships and Age-Related Mutagenesis in Human Hematopoiesis , 2018, Cell Reports.

[53]  Andrew C. Adey,et al.  Joint profiling of chromatin accessibility and gene expression in thousands of single cells , 2018, Science.

[54]  Simona Bianco,et al.  Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains , 2018, Nature Genetics.

[55]  K. D. Sørensen,et al.  Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma , 2018, Nature Communications.

[56]  Peter J. Campbell,et al.  Population dynamics of normal human blood inferred from somatic mutations , 2018, Nature.

[57]  Thomas M. Norman,et al.  Molecular recording of mammalian embryogenesis , 2018, bioRxiv.

[58]  R. Locksley,et al.  Innate Lymphoid Cells: 10 Years On , 2018, Cell.

[59]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[60]  Beryl B. Cummings,et al.  The Genetic Landscape of Diamond-Blackfan Anemia , 2018, bioRxiv.

[61]  B. Tabak,et al.  Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus , 2018, Cell.

[62]  Yaniv Lubling,et al.  Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis , 2018, Nature Cell Biology.

[63]  Martin J. Aryee,et al.  Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation , 2018, Cell.

[64]  R. Chapple,et al.  Lineage tracing of murine adult hematopoietic stem cells reveals active contribution to steady-state hematopoiesis. , 2018, Blood advances.

[65]  A. Bigas,et al.  Blood Development: Hematopoietic Stem Cell Dependence and Independence. , 2018, Cell stem cell.

[66]  M. Nöthen,et al.  Genome-wide association study identifies susceptibility loci for B-cell childhood acute lymphoblastic leukemia , 2018, Nature Communications.

[67]  Martha L. Bulyk,et al.  Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch , 2018, Cell.

[68]  Jesse M. Engreitz,et al.  Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis , 2018, Cell.

[69]  Samuel L. Wolock,et al.  Population Snapshots Predict Early Hematopoietic and Erythroid Hierarchies , 2018, Nature.

[70]  Charles A. Herring,et al.  Single-Cell Computational Strategies for Lineage Reconstruction in Tissue Systems , 2018, Cellular and molecular gastroenterology and hepatology.

[71]  Martin J. Aryee,et al.  Interrogation of human hematopoiesis at single-cell and single-variant resolution , 2018, Nature Genetics.

[72]  B. Göttgens,et al.  From haematopoietic stem cells to complex differentiation landscapes , 2018, Nature.

[73]  Andreas Trumpp,et al.  A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies , 2018, Nature.

[74]  S. Henikoff,et al.  Targeted in situ genome-wide profiling with high efficiency for low cell numbers , 2018, Nature Protocols.

[75]  P. Woll,et al.  Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells , 2018, Nature.

[76]  Samuel L. Wolock,et al.  Clonal analysis of lineage fate in native hematopoiesis , 2017, Nature.

[77]  J. Telenius,et al.  A tissue-specific self-interacting chromatin domain forms independently of enhancer-promoter interactions , 2017, Nature Communications.

[78]  S. McKinney-Freeman,et al.  Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny , 2017, Nature Cell Biology.

[79]  Howard Y. Chang,et al.  Discovery of stimulation-responsive immune enhancers with CRISPR activation , 2017, Nature.

[80]  R. Hardison,et al.  Between form and function: the complexity of genome folding , 2017, Human molecular genetics.

[81]  Alexander Medvinsky,et al.  Human haematopoietic stem cell development: from the embryo to the dish , 2017, Development.

[82]  Matthew E. Gosden,et al.  Tissue-specific CTCF/Cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo , 2017, Nature Cell Biology.

[83]  K. Akashi,et al.  Identification of unipotent megakaryocyte progenitors in human hematopoiesis. , 2017, Blood.

[84]  S. Gabriel,et al.  Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease , 2017, The New England journal of medicine.

[85]  S. Morrison,et al.  Adult haematopoietic stem cell niches , 2017, Nature Reviews Immunology.

[86]  L. Steinmetz,et al.  Human haematopoietic stem cell lineage commitment is a continuous process , 2017, Nature Cell Biology.

[87]  G. Szöllősi,et al.  Hierarchical tissue organization as a general mechanism to limit the accumulation of somatic mutations , 2017, Nature Communications.

[88]  Steven Henikoff,et al.  An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites , 2016, bioRxiv.

[89]  William J. Astle,et al.  Allelic Landscape of Human Blood Cell Trait Variation and Links , 2016 .

[90]  Sharon R Grossman,et al.  Systematic mapping of functional enhancer–promoter connections with CRISPR interference , 2016, Science.

[91]  Nicola K. Wilson,et al.  A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. , 2016, Blood.

[92]  E. Shapiro,et al.  A generic, cost-effective, and scalable cell lineage analysis platform , 2016, Genome research.

[93]  Gazelle Zerafati,et al.  Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. , 2016, Blood.

[94]  Bruce J. Aronow,et al.  Single-cell analysis of mixed-lineage states leading to a binary cell fate choice , 2016, Nature.

[95]  Mauro J. Muraro,et al.  De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data , 2016, Cell stem cell.

[96]  Andrew D. Johnson,et al.  Whole-Exome Sequencing Identifies Loci Associated with Blood Cell Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis. , 2016, American journal of human genetics.

[97]  Eric S. Lander,et al.  Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms , 2016, Proceedings of the National Academy of Sciences.

[98]  L. Mirny,et al.  Hematopoietic Stem Cells Are the Major Source of Multilineage Hematopoiesis in Adult Animals. , 2016, Immunity.

[99]  L. Pennacchio,et al.  Genetic dissection of the α-globin super-enhancer in vivo , 2016, Nature Genetics.

[100]  James A. Gagnon,et al.  Whole-organism lineage tracing by combinatorial and cumulative genome editing , 2016, Science.

[101]  C. von Kalle,et al.  In Vivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases , 2016, Cell stem cell.

[102]  L. Zon,et al.  Engineering Hematopoietic Stem Cells: Lessons from Development. , 2016, Cell stem cell.

[103]  Jacob C. Ulirsch,et al.  Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits , 2016, Cell.

[104]  F. Tang,et al.  Tracing haematopoietic stem cell formation at single-cell resolution , 2016, Nature.

[105]  T. Höfer,et al.  Fate Mapping and Quantitation of Hematopoiesis In Vivo. , 2016, Annual review of immunology.

[106]  Jens Lichtenberg,et al.  Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways , 2016, Genome Biology.

[107]  W. Ouwehand,et al.  An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability , 2016, eLife.

[108]  Cyrille F. Dunant,et al.  Distinct routes of lineage development reshape the human blood hierarchy across ontogeny , 2016, Science.

[109]  David Levens,et al.  ChIP bias as a function of cross-linking time , 2015, Chromosome Research.

[110]  T. Schumacher,et al.  The Branching Point in Erythro-Myeloid Differentiation , 2015, Cell.

[111]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2015, Cell.

[112]  L. Steinmetz,et al.  Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors. , 2015, Cell stem cell.

[113]  T. Brümmendorf,et al.  Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions , 2015, eLife.

[114]  David W. Nauen,et al.  Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. , 2015, Cell stem cell.

[115]  Berthold Göttgens,et al.  Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions. , 2015, Cell stem cell.

[116]  G. Wahl,et al.  A Critical Examination of the “Bad Luck” Explanation of Cancer Risk , 2015, Cancer Prevention Research.

[117]  Philip A. Ewels,et al.  Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C , 2015, Nature Genetics.

[118]  Jacob C. Ulirsch,et al.  BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations. , 2015, The Journal of clinical investigation.

[119]  B. Göttgens Regulatory network control of blood stem cells. , 2015, Blood.

[120]  C. Eaves Hematopoietic stem cells: concepts, definitions, and the new reality. , 2015, Blood.

[121]  Cameron S. Osborne,et al.  The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements , 2015, Genome research.

[122]  M. Weiss,et al.  Anemia: progress in molecular mechanisms and therapies , 2015, Nature Medicine.

[123]  Tim Holland-Letz,et al.  Fundamental properties of unperturbed haematopoiesis from stem cells in vivo , 2015, Nature.

[124]  B. Vogelstein,et al.  Variation in cancer risk among tissues can be explained by the number of stem cell divisions , 2015, Science.

[125]  M. McCarthy,et al.  Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.

[126]  S. Gabriel,et al.  Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. , 2014, The New England journal of medicine.

[127]  Joshua F. McMichael,et al.  Age-related cancer mutations associated with clonal hematopoietic expansion , 2014, Nature Medicine.

[128]  Allon M. Klein,et al.  Clonal dynamics of native haematopoiesis , 2014, Nature.

[129]  R. Eils,et al.  Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. , 2014, Cell stem cell.

[130]  Asif U. Tamuri,et al.  Genome sequencing of normal cells reveals developmental lineages and mutational processes , 2014, Nature.

[131]  E. Lander,et al.  Altered translation of GATA1 in Diamond-Blackfan anemia , 2014, Nature Medicine.

[132]  B. Göttgens,et al.  Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. , 2014, Cell stem cell.

[133]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[134]  B. Williams,et al.  From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing , 2014, Genome research.

[135]  C. Eaves,et al.  Developmental changes in hematopoietic stem cell properties , 2013, Experimental & Molecular Medicine.

[136]  Alexander van Oudenaarden,et al.  Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins , 2013, Proceedings of the National Academy of Sciences.

[137]  I. Macaulay,et al.  Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy , 2013, Nature.

[138]  B. Göttgens,et al.  Genome-wide analysis of transcriptional regulators in human HSPCs reveals a densely interconnected network of coding and noncoding genes. , 2013, Blood.

[139]  S. Orkin,et al.  Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. , 2013, Cell stem cell.

[140]  H. Nakauchi,et al.  Clonal Analysis Unveils Self-Renewing Lineage-Restricted Progenitors Generated Directly from Hematopoietic Stem Cells , 2013, Cell.

[141]  J. Dürig,et al.  Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. , 2013, Cell reports.

[142]  Mithat Gonen,et al.  Recurrent Somatic TET2 Mutations in Normal Elderly Individuals With Clonal Hematopoiesis , 2012, Nature Genetics.

[143]  J. Dekker,et al.  The long-range interaction landscape of gene promoters , 2012, Nature.

[144]  Anja Niebel,et al.  Aging of the Microenvironment Influences Clonality in Hematopoiesis , 2012, PloS one.

[145]  G. Crooks,et al.  Lymphoid Priming in Human Bone Marrow Begins Prior to CD10 Expression with Up-Regulation of L-selectin , 2012, Nature Immunology.

[146]  Stephen R. Quake,et al.  Genome-wide Single-Cell Analysis of Recombination Activity and De Novo Mutation Rates in Human Sperm , 2012, Cell.

[147]  E. Lander,et al.  Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. , 2012, The Journal of clinical investigation.

[148]  William Wheeler,et al.  Detectable clonal mosaicism and its relationship to aging and cancer , 2012, Nature Genetics.

[149]  Ingo Ruczinski,et al.  Detectable clonal mosaicism from birth to old age and its relationship to cancer , 2012, Nature Genetics.

[150]  Carsten Peterson,et al.  Inferring rules of lineage commitment in haematopoiesis , 2012, Nature Cell Biology.

[151]  Elisa Laurenti,et al.  Hematopoiesis: a human perspective. , 2012, Cell stem cell.

[152]  P. Madeddu,et al.  Bone marrow microenvironment , 2012 .

[153]  D. Traver,et al.  Cellular dissection of zebrafish hematopoiesis. , 2011, Methods in cell biology.

[154]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[155]  Flow cytometry in the post fluorescence era. , 2011, Best practice & research. Clinical haematology.

[156]  Debashis Sahoo,et al.  Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age , 2011, Proceedings of the National Academy of Sciences.

[157]  Igor Jurisica,et al.  Isolation of Single Human Hematopoietic Stem Cells Capable of Long-Term Multilineage Engraftment , 2011, Science.

[158]  P. Vyas,et al.  Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. , 2011, Cancer cell.

[159]  Hans Clevers,et al.  Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells , 2010, Cell.

[160]  J. Dick,et al.  Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development , 2010, Nature Immunology.

[161]  I. Weissman,et al.  Niche recycling through division-independent egress of hematopoietic stem cells , 2009, The Journal of experimental medicine.

[162]  Stuart H. Orkin,et al.  Developmental and species-divergent globin switching are driven by BCL11A , 2009, Nature.

[163]  H. Tanabe,et al.  Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. , 2009, Developmental cell.

[164]  P. Lio’,et al.  Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair , 2008, Cell.

[165]  J. Hirschhorn,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 Tables S1 to S7 References Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-specific Repressor Bcl11a , 2022 .

[166]  L. Zon,et al.  Hematopoiesis: An Evolving Paradigm for Stem Cell Biology , 2008, Cell.

[167]  I. Weissman,et al.  Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. , 2007, Cell stem cell.

[168]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[169]  David Bryder,et al.  Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. , 2007, Cell stem cell.

[170]  D. Scadden,et al.  Limiting factors in murine hematopoietic stem cell assays. , 2007, Cell stem cell.

[171]  Ryan Brinkman,et al.  Long-term propagation of distinct hematopoietic differentiation programs in vivo. , 2007, Cell stem cell.

[172]  Alexander van Oudenaarden,et al.  Stochastic Gene Expression: from Single Molecules to the Proteome This Review Comes from a Themed Issue on Chromosomes and Expression Mechanisms Edited Measuring Noise Mrna Fluctuations , 2022 .

[173]  Irving L. Weissman,et al.  Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates , 2005, The Journal of experimental medicine.

[174]  Lina A. Thoren,et al.  Identification of Flt3+ Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential A Revised Road Map for Adult Blood Lineage Commitment , 2005, Cell.

[175]  Robert S Negrin,et al.  Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. , 2005, Annual review of medicine.

[176]  Pu Zhang,et al.  Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. , 2004, Immunity.

[177]  S. Orkin,et al.  Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells , 2004, Nature.

[178]  Hui Zeng,et al.  Transcription factor Gfi1 regulates self‐renewal and engraftment of hematopoietic stem cells , 2004, The EMBO journal.

[179]  S. Orkin,et al.  Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. , 2004, Genes & development.

[180]  L. Karlsson,et al.  Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. , 2004, Blood.

[181]  G. Sauvageau,et al.  Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells , 2003, Nature.

[182]  Irving L. Weissman,et al.  Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells , 2003, Nature.

[183]  T. Fliedner,et al.  Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure. , 2002, Cancer biotherapy & radiopharmaceuticals.

[184]  H. Nakauchi,et al.  Age-Associated Characteristics of Murine Hematopoietic Stem Cells , 2000, The Journal of experimental medicine.

[185]  I. Weissman,et al.  A clonogenic common myeloid progenitor that gives rise to all myeloid lineages , 2000, Nature.

[186]  S. Neben,et al.  Defects in Hemopoietic Stem Cell Activity in Ikaros Mutant Mice , 1999, The Journal of experimental medicine.

[187]  I. Weissman,et al.  In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[188]  G. de Haan,et al.  Dynamic changes in mouse hematopoietic stem cell numbers during aging. , 1999, Blood.

[189]  A. Green,et al.  Clonal haemopoiesis in normal elderly women: implications for the myeloproliferative disorders and myelodysplastic syndromes , 1997, British journal of haematology.

[190]  I. Weissman,et al.  Identification of a lineage of multipotent hematopoietic progenitors. , 1997, Development.

[191]  Y Fujiwara,et al.  Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[192]  Hiromitsu Nakauchi,et al.  Long-Term Lymphohematopoietic Reconstitution by a Single CD34-Low/Negative Hematopoietic Stem Cell , 1996, Science.

[193]  D. Gilliland,et al.  Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. , 1996, Blood.

[194]  I. Weissman,et al.  The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. , 1994, Immunity.

[195]  E. Scott,et al.  Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. , 1994, Science.

[196]  C. Eaves,et al.  Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[197]  N. Iscove,et al.  Representative in Vitro cDNA Amplification From Individual Hemopoietic Cells and Colonies , 1990 .

[198]  I. Weissman,et al.  Purification and characterization of mouse hematopoietic stem cells. , 1988, Science.

[199]  Ihor R. Lemischka,et al.  Developmental potential and dynamic behavior of hematopoietic stem cells , 1986, Cell.

[200]  J. Till,et al.  THE DISTRIBUTION OF COLONY-FORMING CELLS AMONG SPLEEN COLONIES. , 1963, Journal of cellular and comparative physiology.

[201]  J. Till,et al.  Cytological Demonstration of the Clonal Nature of Spleen Colonies Derived from Transplanted Mouse Marrow Cells , 1963, Nature.

[202]  J. Till,et al.  A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. , 1961, Radiation research.

[203]  C. E. Ford,et al.  Cytological Identification of Radiation-Chimæras , 1956, Nature.

[204]  E. Cronkite,et al.  Post-Radiation Parabiosis and Survival in Rats.∗ , 1951, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[205]  A. Maximow Untersuchungen über Blut und Bindegewebe , 1923 .

[206]  A. Maximow Untersuchungen über Blut und Bindegewebe , 1909 .