The fluorescent probe lucigenin was incorporated in poly(vinyl chloride) (PVC) gels, and laser scanning confocal microscopy (LSCM) was used to clarify the internal structures of the gels. From the two-dimensional and three-dimensional information by LSCM, we first observed the internal structure of the PVC gel at a wet status, where the PVC gels comprised a polymer-rich phase and a polymer-poor phase uniformly with a three-dimensional network structure. After an electric field was applied, an effect of the electric field resulted in the change of internal structure in the gels. The polymer-poor phase moved from the cathode to the anode and the polymer-rich phase formed linelike arrangement between electrodes due to the attraction force. On the other hand, the freeze-dried PVC gels with/without in-situ dc voltage casting were particularly fabricated to confirm above results by the field emission scanning electron microscopy (FE-SEM). It was found that many craters remained on the surface of the gel near the anode due to sublimation in freeze-drying. This phenomenon did not appear on the surface near the cathode. The results of in-situ dc voltage casting also suggested that a substantial amount of polymer-poor phase was moved and fixed at the anode. Thus, results of both LSCM and in-situ dc voltage casting corresponded to the effect of electric field on PVC gels and provided a convincing evidence for the interpretation of the deformation mechanism of PVC gel actuators by an applied electric field.