High-performance supercapacitors based on MnO2 tube-in-tube arrays

MnO2 tube-in-tube arrays supported on carbon fiber cloth (MnO2 TTAs/CFC) were designed and synthesized. As a robust integrated 3D electrode with high utilization rate and fast ion transport, the MnO2 TTAs/CFC exhibits a high areal specific capacitance (Csp) of 322 mF cm−2 (∼1007 F g−1 for MnO2 at 0.125 A g−1) and superior cycling stability (95.1% retention of the initial Csp after 2000 cycles) at a high scan rate of 100 mV s−1. The assembled flexible all-solid-state symmetric supercapacitors (SSCs) based on MnO2 TTAs/CFC electrodes show a high volumetric energy density of 0.073 mW h cm−3 at a power density of 25 W kg−1 and high cycling stability (96.4% retention of the initial Csp after 2000 cycles). This study demonstrates that the 3D MnO2 TTAs/CFC electrodes hold great potential for use in flexible energy storage devices.

[1]  W. Marsden I and J , 2012 .

[2]  Wang Zilong,et al.  High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core–shell nanorods//specially reduced graphene oxide , 2014 .

[3]  X. Lou,et al.  Formation of Ni(x)Co(3-x)S₄ hollow nanoprisms with enhanced pseudocapacitive properties. , 2014, Angewandte Chemie.

[4]  Yi Cui,et al.  Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. , 2011, Nano letters.

[5]  Shengjie Peng,et al.  The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties , 2013 .

[6]  Yu-Lun Chueh,et al.  Fiber-based all-solid-state flexible supercapacitors for self-powered systems. , 2012, ACS nano.

[7]  Shuhong Yu,et al.  Bacterial‐Cellulose‐Derived Carbon Nanofiber@MnO2 and Nitrogen‐Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density , 2013, Advanced materials.

[8]  Teng Zhai,et al.  Solid‐State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability , 2014, Advanced materials.

[9]  Dezhi Kong,et al.  Three‐Dimensional Co3O4@MnO2 Hierarchical Nanoneedle Arrays: Morphology Control and Electrochemical Energy Storage , 2014 .

[10]  Chongwu Zhou,et al.  Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. , 2012, Nano letters.

[11]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[12]  Bo Pei,et al.  Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors , 2013 .

[13]  Min Wei,et al.  Hierarchical NiMn Layered Double Hydroxide/Carbon Nanotubes Architecture with Superb Energy Density for Flexible Supercapacitors , 2014 .

[14]  Yi Xie,et al.  Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. , 2013, Nano letters.

[15]  Zhenxing Zhang,et al.  Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. , 2013, ACS nano.

[16]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[17]  Lele Peng,et al.  Two dimensional nanomaterials for flexible supercapacitors. , 2014, Chemical Society reviews.

[18]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[19]  Ye Hou,et al.  Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. , 2010, Nano letters.

[20]  Erratum: All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes (Nanotechnology (2012) 23 (065401)) , 2012 .

[21]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[22]  Bin Liu,et al.  Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. , 2014, Angewandte Chemie.

[23]  Hua Zhang,et al.  A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations. , 2014, Nano letters.

[24]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[25]  Zhiyuan Zeng,et al.  Hollow core–shell nanostructure supercapacitor electrodes: gap matters , 2012 .

[26]  Teng Zhai,et al.  TiO2@C core–shell nanowires for high-performance and flexible solid-state supercapacitors , 2013 .

[27]  Huisheng Peng,et al.  A highly stretchable, fiber-shaped supercapacitor. , 2013, Angewandte Chemie.

[28]  A. J. Frank,et al.  Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. , 2010, Nano letters.

[29]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[30]  Eleanor I. Gillette,et al.  Self-limiting electrodeposition of hierarchical MnO₂ and M(OH)₂/MnO₂ nanofibril/nanowires: mechanism and supercapacitor properties. , 2013, ACS nano.

[31]  Cheng Yang,et al.  Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor , 2014 .

[32]  Teng Zhai,et al.  Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. , 2012, Nano letters.

[33]  Jingguang G. Chen,et al.  Nanostructured electrodes for high-performance pseudocapacitors. , 2013, Angewandte Chemie.

[34]  B. Liu,et al.  Flexible Energy‐Storage Devices: Design Consideration and Recent Progress , 2014, Advanced materials.

[35]  Yong Ding,et al.  Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. , 2013, ACS nano.

[36]  J. Tarascon,et al.  V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. , 2011, Journal of the American Chemical Society.

[37]  Xin Wang,et al.  General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. , 2013, Angewandte Chemie.

[38]  Haili He,et al.  A High‐Performance Binary Ni–Co Hydroxide‐based Water Oxidation Electrode with Three‐Dimensional Coaxial Nanotube Array Structure , 2014 .

[39]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[40]  Shuang Yuan,et al.  Advances and challenges for flexible energy storage and conversion devices and systems , 2014 .

[41]  H. Alshareef,et al.  Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. , 2012, Nano letters.

[42]  Haitao Huang,et al.  A One‐Step and Binder‐Free Method to Fabricate Hierarchical Nickel‐Based Supercapacitor Electrodes with Excellent Performance , 2013 .

[43]  Husam N. Alshareef,et al.  Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. , 2011, ACS nano.

[44]  Xiaodong Wu,et al.  Graphene oxide--MnO2 nanocomposites for supercapacitors. , 2010, ACS nano.

[45]  E. Wang,et al.  One-step electrochemical approach to the synthesis of Graphene/MnO2 nanowall hybrids , 2011 .

[46]  G. R. Rao,et al.  Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis , 2010 .

[47]  Zhichuan J. Xu,et al.  Aqueous-based chemical route toward ambient preparation of multicomponent core-shell nanotubes. , 2014, ACS nano.

[48]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[49]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[50]  N. C. Fan,et al.  Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. , 2013, Nanoscale.

[51]  Zenan Yu,et al.  Highly Ordered MnO2 Nanopillars for Enhanced Supercapacitor Performance , 2013, Advanced materials.

[52]  Yu Huang,et al.  Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. , 2013, ACS nano.