Reservoir Operating System Using Sampling Stochastic Dynamic Programming for the Han River Basin

Korea water resources corporation (K-Water) has developed the real-time water resources management system for the Nakdong and the Geum River basin to efficiently operate multi-purpose dams in the basins. This study has extended to the Han River basin for providing an effective ending target storage of a month to the real-time water resources management system using Sampling Stochastic Dynamic Programming (SSDP), consequently increasing the efficiency of the reservoir system. The optimization model were developed for three reservoirs, named Soyang, Chungju, and Hwacheon, with high priority in terms of the amounts of effective capacity and water supply for the basin. The number of storage state variable for each dam to set an optimization problem has been assigned from the results of sensitivity analysis. Compared with the K-water operating policy with the target water supply elevations, the optimization model suggested in this study showed that the shortfalls are decreased by 37.22 MCM/year for the required water demands in the basin, even increasing 171 GWh in hydro electronic power generation. In addition, the result of a reservoir operating system during the drawdown period applied to real situation demonstrates that additional releases for water quality or hydro electronic power generation would be possible during the drawdown period between 2007 and 2008. On the basis of these simulation results, the applicability of the SSDP model and the reservoir operating system is proved. Therefore, the more efficient reservoir operation can be achieved if the reservoir operating system is extended further to other Korean basins.