Quantification of Uncertainty in Flow Simulations Using Probabilistic Methods
暂无分享,去创建一个
[1] Jan S. Hesthaven,et al. Padé-Legendre Interpolants for Gibbs Reconstruction , 2006, J. Sci. Comput..
[2] Roger G. Ghanem,et al. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..
[3] A. Stroud,et al. Nodes and Weights of Quadrature Formulas , 1965 .
[4] Richard D. Deveaux,et al. Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.
[5] Jon C. Helton,et al. Investigation of Evidence Theory for Engineering Applications , 2002 .
[6] Matthew F. Barone,et al. Measures of agreement between computation and experiment: Validation metrics , 2004, J. Comput. Phys..
[7] William L. Oberkampf,et al. Guide for the verification and validation of computational fluid dynamics simulations , 1998 .
[8] WALTER GAUTSCHI. Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.
[9] M. D. Salas,et al. Multiple steady states for characteristic initial value problems , 1986 .
[10] Gianluca Iaccarino,et al. Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces , 2009, J. Comput. Phys..
[11] Jon C. Helton,et al. Sampling-based methods for uncertainty and sensitivity analysis. , 2000 .
[12] Henryk Wozniakowski,et al. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..
[13] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[14] J. Rice. Mathematical Statistics and Data Analysis , 1988 .
[15] Daniel M. Tartakovsky,et al. Stochastic analysis of transport in tubes with rough walls , 2006, J. Comput. Phys..
[16] P. András,et al. Alternative sampling methods for estimating multivariate normal probabilities , 2003 .
[17] Jan S. Hesthaven,et al. Uncertainty analysis for the steady-state flows in a dual throat nozzle , 2005 .
[18] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[19] H. Keller,et al. Analysis of Numerical Methods , 1967 .
[20] William H. Press,et al. Numerical recipes in C , 2002 .
[21] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[22] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[23] Robert W. Walters,et al. Uncertainty analysis for fluid mechanics with applications , 2002 .
[24] Michel Loève,et al. Probability Theory I , 1977 .
[25] Baskar Ganapathysubramanian,et al. Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..
[26] Patrick Knupp,et al. Verification of Computer Codes in Computational Science and Engineering , 2002 .
[27] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[28] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[29] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[30] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[31] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[32] N. Wiener. The Homogeneous Chaos , 1938 .
[33] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[34] Anna M. Bonner,et al. Acknowledgments , 2019, The Neurodiagnostic journal.