A review of bacterial cellulose‐based drug delivery systems: their biochemistry, current approaches and future prospects

The field of pharmaceutical technology is expanding rapidly because of the increasing number of drug delivery options. Successful drug delivery is influenced by multiple factors, one of which is the appropriate identification of materials for research and engineering of new drug delivery systems. Bacterial cellulose (BC) is one such biopolymer that fulfils the criteria for consideration as a drug delivery material.

[1]  Sébastien Perrier,et al.  Cellulose Modification by Polymer Grafting: A Review , 2009 .

[2]  I. Smirnova,et al.  Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems , 2011 .

[3]  Liang Hong,et al.  Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route , 2006 .

[4]  Paula A A P Marques,et al.  Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. , 2009, Acta biomaterialia.

[5]  Jonny J. Blaker,et al.  Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties , 2009 .

[6]  Paul Gatenholm,et al.  Bacterial nanocellulose : a sophisticated multifunctional material , 2013 .

[7]  Hui-Huang Chen,et al.  Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation , 2011 .

[8]  Z. Li,et al.  Synthesis of PLA-co-PGMA Copolymer and its Application in the Surface Modification of Bacterial Cellulose , 2010 .

[9]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[10]  Andrzej Wlochowicz,et al.  GPC STUDIES ON BACTERIAL CELLULOSE , 2004 .

[11]  Koichi Enomoto,et al.  Increased Antibiotic Release from a Bone Cement Containing Bacterial Cellulose , 2011, Clinical orthopaedics and related research.

[12]  B. Neilan,et al.  Characterization, Differentiation and Identification of Wild-type Cellulose-synthesizing Acetobacter strains Involved in Nata de Coco Production , 1998 .

[13]  Francesca Ungaro,et al.  Controlled drug delivery in tissue engineering. , 2008, Advanced drug delivery reviews.

[14]  Andrzej Wlochowicz,et al.  Molecular parameters of bacterial cellulose. Effect of temperature and pH biosynthesis medium , 2003 .

[15]  P. Wanichapichart,et al.  Chain scission and anti fungal effect of electron beam on cellulose membrane , 2012 .

[16]  Antje Potthast,et al.  Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. , 2010, Macromolecular bioscience.

[17]  Guang Yang,et al.  Thermoresponsive bacterial cellulose whisker/poly(NIPAM-co-BMA) nanogel complexes: synthesis, characterization, and biological evaluation. , 2013, Biomacromolecules.

[18]  Hernan Charreau,et al.  Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. , 2012, Recent patents on nanotechnology.

[19]  Christoph Weder,et al.  Stress-transfer in anisotropic and environmentally adaptive cellulose whisker nanocomposites. , 2010, Biomacromolecules.

[20]  Teerapol Srichana,et al.  Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[21]  W. Wan,et al.  Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[22]  Zhidan Lin,et al.  New Bacterial Cellulose/Polyaniline Nanocomposite Film with One Conductive Side through Constrained Interfacial Polymerization , 2013 .

[23]  Athanasios Mantalaris,et al.  Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites , 2007 .

[24]  Chhaya Saxena,et al.  Studies on pervaporative characteristics of bacterial cellulose membrane , 2005 .

[25]  S. Eichhorn,et al.  Interfacial energy dissipation in a cellulose nanowhisker composite , 2011, Nanotechnology.

[26]  Dieter Klemm,et al.  Nanocelluloses as Innovative Polymers in Research and Application , 2006 .

[27]  Manisha Pandey,et al.  Accelerated Preparation of Novel Bacterial Cellulose/Acrylamide-Based Hydrogel by Microwave Irradiation , 2013 .

[28]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[29]  Feng F. Hong,et al.  Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties , 2011 .

[30]  Florin Tache,et al.  Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems , 2007 .

[31]  S. Bielecki,et al.  Factors affecting the yield and properties of bacterial cellulose , 2002, Journal of Industrial Microbiology and Biotechnology.

[32]  Ryota Kose,et al.  "Nanocellulose" as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision. , 2011, Biomacromolecules.

[33]  Wei Shen,et al.  Carboxymethylated-bacterial cellulose for copper and lead ion removal. , 2009, Journal of hazardous materials.

[34]  Hyoung-Joon Jin,et al.  Antimicrobial Properties of Hydrated Cellulose Membranes With Silver Nanoparticles , 2009, Journal of biomaterials science. Polymer edition.

[35]  Stefan Kasapis,et al.  Bacterial and plant cellulose modification using ultrasound irradiation , 2009 .

[36]  Thomas Heinze,et al.  Synthesis of water-soluble cellulose esters applying carboxylic acid imidazolides , 2010 .

[37]  Wojciech Czaja,et al.  Structural investigations of microbial cellulose produced in stationary and agitated culture , 2004 .

[38]  Armando J D Silvestre,et al.  Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. , 2012, International journal of pharmaceutics.

[39]  Thomas Heinze,et al.  Efficient Homogeneous Chemical Modification of Bacterial Cellulose in the Ionic Liquid 1‐N‐Butyl‐3‐methylimidazolium Chloride , 2006 .

[40]  Seung-Hyeon Moon,et al.  Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane , 2004 .

[41]  Mohammad Abu Haija,et al.  A new method for producing microcrystalline cellulose from Gluconacetobacter xylinus and kenaf , 2011 .

[42]  Shin Kawano,et al.  Cellulose production by Enterobacter sp. CJF-002 and identification of genes for cellulose biosynthesis , 2012, Cellulose.

[43]  Katrin Frankenfeld,et al.  Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide , 2010 .

[44]  Younes Messaddeq,et al.  Self-supported silver nanoparticles containing bacterial cellulose membranes , 2008 .

[45]  Gao Shanshan,et al.  Preparation of cellulose films from solution of bacterial cellulose in NMMO , 2012 .

[46]  Marek Kawecki,et al.  The future prospects of microbial cellulose in biomedical applications. , 2007, Biomacromolecules.

[47]  Naveed Ahmad,et al.  Bacterial cellulose film coating as drug delivery system: Physicochemical, thermal and drug release properties , 2012 .

[48]  Masatoshi Iguchi,et al.  Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system , 1999 .

[49]  Dieter Klemm,et al.  Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives , 2009 .

[50]  Jinwen Zhang,et al.  Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties , 2012, Cellulose.

[51]  L. Heux,et al.  Gas-phase surface esterification of cellulose microfibrils and whiskers. , 2009, Biomacromolecules.

[52]  Honglai Liu,et al.  Chemistry and Applications of Nanocrystalline Cellulose and its Derivatives: a Nanotechnology Perspective , 2011 .

[53]  M. Gidley,et al.  Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524 , 2009, Journal of applied microbiology.

[54]  Qinglin Wu,et al.  Recent Development in Applications of Cellulose Nanocrystals for Advanced Polymer-Based Nanocomposites by Novel Fabrication Strategies , 2012 .

[55]  Montakarn Chittchang,et al.  The use of mucoadhesive polymers in buccal drug delivery. , 2005, Advanced drug delivery reviews.

[56]  Robin Zuluaga,et al.  Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. , 2012, Carbohydrate polymers.

[57]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[58]  Y. Yamashita,et al.  Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693 , 2009 .

[59]  Shin Kawano,et al.  Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. , 2002, DNA research : an international journal for rapid publication of reports on genes and genomes.

[60]  Peng Chen,et al.  Modification and applications of bacterial celluloses in polymer science , 2010 .

[61]  Naveed Ahmad,et al.  Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery , 2012 .

[62]  Chin-Chen Chu,et al.  The effects of iontophoresis and electroporation on transdermal delivery of buprenorphine from solutions and hydrogels , 2002, The Journal of pharmacy and pharmacology.

[63]  Jian Li,et al.  Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds , 2009 .

[64]  Frank X. Gu,et al.  Special series of articles on Nanotechnology , 2011 .

[65]  Stephen J. Eichhorn,et al.  An estimation of the Young’s modulus of bacterial cellulose filaments , 2008 .

[66]  Junji Sugiyama,et al.  Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid. , 2007, Journal of biomedical materials research. Part A.

[67]  Y. Nishi,et al.  The structure and mechanical properties of sheets prepared from bacterial cellulose , 1990 .

[68]  N. Ausmees,et al.  Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. , 1999, Microbiology.

[69]  Sergio Torres-Giner,et al.  Extraction of Microfibrils from Bacterial Cellulose Networks for Electrospinning of Anisotropic Biohybrid Fiber Yarns , 2010 .

[70]  Vladimir R Muzykantov,et al.  Polymeric carriers: role of geometry in drug delivery. , 2008, Expert opinion on drug delivery.

[71]  Carmen S. R. Freire,et al.  Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach , 2011 .

[72]  Jacob L.W. Morgan,et al.  Crystallographic snapshot of cellulose synthesis and membrane translocation , 2012, Nature.

[73]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[74]  Ton Peijs,et al.  All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose , 2009 .

[75]  Akira Isogai,et al.  Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. , 2009, Biomacromolecules.

[76]  R. Brown,et al.  Microbial cellulose--the natural power to heal wounds. , 2006, Biomaterials.

[77]  G. Simon,et al.  Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. , 2012, Carbohydrate polymers.

[78]  Dana Kralisch,et al.  The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. , 2013, Journal of pharmaceutical sciences.

[79]  Taghi Tabarsa,et al.  Bacterial cellulose/silica nanocomposites: preparation and characterization. , 2012, Carbohydrate polymers.

[80]  Jaehwan Kim,et al.  Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility , 2010 .

[81]  W. Wan,et al.  Anisotropic polyvinyl alcohol-Bacterial cellulose nanocomposite for biomedical applications. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[82]  Yann-Lii Leu,et al.  Effect of enhancers and retarders on percutaneous absorption of flurbiprofen from hydrogels. , 2003, International journal of pharmaceutics.

[83]  William T. Winter,et al.  Green Composites Prepared from Cellulose Nanoparticles , 2009 .

[84]  Dieter Klemm,et al.  Bacterial synthesized cellulose — artificial blood vessels for microsurgery , 2001 .

[85]  Zhijun Shi,et al.  Nanocellulose electroconductive composites. , 2013, Nanoscale.

[86]  A. Gandini,et al.  Monomers, Polymers and Composites from Renewable Resources , 2008 .

[87]  Liang Hong,et al.  Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites , 2006 .

[88]  Michael J Gidley,et al.  Formation of cellulose-based composites with hemicelluloses and pectins using Gluconacetobacter fermentation. , 2011, Methods in molecular biology.

[89]  Nadia Halib,et al.  Physicochemical Properties and Characterization of Nata de Coco from Local Food Industries as a Source of Cellulose , 2012 .

[90]  Robin Zuluaga,et al.  Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes , 2011 .

[91]  Christine E. Schmidt,et al.  Conducting polymers in biomedical engineering , 2007 .

[92]  W. Wan,et al.  The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[93]  Mitsuo Kamiwano,et al.  Characterization of non-newtonian behavior during mixing of bacterial cellulose in a bioreactor , 1996 .

[94]  Paul Gatenholm,et al.  Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes , 2007, Biotechnology and bioengineering.

[95]  S. Boryniec,et al.  Chromatografia żelowa w badaniach nad chemiczną obróbką celulozy , 1999 .

[96]  I. Gofman,et al.  Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels. , 2010, Journal of the mechanical behavior of biomedical materials.

[97]  Per Stenstad,et al.  Chemical surface modifications of microfibrillated cellulose , 2008 .

[98]  Timo Laaksonen,et al.  Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[99]  Kentaro Abe,et al.  Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. , 2007, Biomacromolecules.

[100]  Lin Chen,et al.  Biotransformation of wheat straw to bacterial cellulose and its mechanism. , 2013, Bioresource technology.

[101]  Hyoung-Joon Jin,et al.  Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. , 2006, Biomacromolecules.

[102]  Taous Khan,et al.  Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification , 2012 .

[103]  Teerapol Srichana,et al.  Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[104]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[105]  Nadda Chiaoprakobkij,et al.  Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts , 2011 .

[106]  B. Rehm Bacterial polymers: biosynthesis, modifications and applications , 2010, Nature Reviews Microbiology.