Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators

Riboswitches are natural RNA‐based genetic switches that sense small‐molecule metabolites and regulate in response the expression of the corresponding metabolic genes. Within the last years, several engineered riboswitches have been developed that act on various stages of gene expression. These switches can be engineered to respond to any ligand of choice and are therefore of great interest for synthetic biology. In this review, we present an overview of engineered riboswitches and discuss their application in conditional gene expression systems. We will provide structural and mechanistic insights and point out problems and recent trends in the development of engineered riboswitches.

[1]  Jeff Hasty,et al.  Engineered gene circuits , 2002, Nature.

[2]  R. D'Amato,et al.  Exogenous control of mammalian gene expression through modulation of RNA self-cleavage , 2004, Nature.

[3]  Yohei Yokobayashi,et al.  Engineering complex riboswitch regulation by dual genetic selection. , 2008, Journal of the American Chemical Society.

[4]  David R. Liu,et al.  In vivo evolution of an RNA-based transcriptional activator. , 2003, Chemistry & biology.

[5]  S. K. Desai,et al.  A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. , 2007, Chemistry & biology.

[6]  M. Green,et al.  Controlling gene expression in living cells through small molecule-RNA interactions. , 1998, Science.

[7]  Robert T Sauer,et al.  Engineering controllable protein degradation. , 2006, Molecular cell.

[8]  H. Jäck,et al.  A gene regulation system with four distinct expression levels , 2006, The journal of gene medicine.

[9]  M. Bowser,et al.  Microfluidic selection and applications of aptamers. , 2007, Journal of separation science.

[10]  A. Ferré-D’Amaré,et al.  Small self-cleaving ribozymes. , 2010, Cold Spring Harbor perspectives in biology.

[11]  E. Westhof,et al.  Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity , 2003, Nature Structural Biology.

[12]  J. Gallivan,et al.  A flow cytometry-based screen for synthetic riboswitches , 2008, Nucleic acids research.

[13]  C. Berens,et al.  A tetracycline-binding RNA aptamer. , 2001, Bioorganic & medicinal chemistry.

[14]  Simon Ausländer,et al.  A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. , 2010, Molecular bioSystems.

[15]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[16]  B. Suess,et al.  Conformational dynamics of the tetracycline-binding aptamer , 2011, Nucleic acids research.

[17]  S. Avery,et al.  Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry , 2000, Yeast.

[18]  R. Breaker,et al.  The structural and functional diversity of metabolite-binding riboswitches. , 2009, Annual review of biochemistry.

[19]  P. Burguière,et al.  S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum , 2008, Nucleic acids research.

[20]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[21]  C. Wilson,et al.  Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. , 2001, Bioorganic & medicinal chemistry.

[22]  David R. Liu,et al.  Engineering a ligand-dependent RNA transcriptional activator. , 2004, Chemistry & biology.

[23]  R. Gaur,et al.  An artificial riboswitch for controlling pre-mRNA splicing. , 2005, RNA.

[24]  Zoltán Konthur,et al.  Automation in the High-throughput Selection of Random Combinatorial Libraries—Different Approaches for Select Applications , 2010, Molecules.

[25]  M. Elowitz,et al.  Programming gene expression with combinatorial promoters , 2007, Molecular systems biology.

[26]  K. Dery,et al.  Ligand-induced sequestering of branchpoint sequence allows conditional control of splicing , 2008, BMC Molecular Biology.

[27]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[28]  Jeff Hasty,et al.  A synthetic gene network for tuning protein degradation in Saccharomyces cerevisiae , 2007, Molecular systems biology.

[29]  B. Suess,et al.  PELDOR spectroscopy reveals preorganization of the neomycin-responsive riboswitch tertiary structure. , 2010, Journal of the American Chemical Society.

[30]  D. Patel,et al.  Saccharide-RNA recognition in a complex formed between neomycin B and an RNA aptamer. , 1999, Structure.

[31]  W. Scott,et al.  Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis , 2006, Cell.

[32]  Xi Chen,et al.  Direct selection for ribozyme cleavage activity in cells. , 2009, RNA.

[33]  Gheorghe Paun,et al.  Splicing , 2019, Bull. EATCS.

[34]  Markus Wieland,et al.  Artificial Riboswitches: Synthetic mRNA‐Based Regulators of Gene Expression , 2008, Chembiochem : a European journal of chemical biology.

[35]  B. Suess,et al.  A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. , 2004, Nucleic acids research.

[36]  Mechanistic Basis for RNA Aptamer‐Based Induction of TetR , 2011, Chembiochem : a European journal of chemical biology.

[37]  Anastasia Khvorova,et al.  Fast cleavage kinetics of a natural hammerhead ribozyme. , 2004, Journal of the American Chemical Society.

[38]  Eric D Brown,et al.  A FACS‐Based Approach to Engineering Artificial Riboswitches , 2008, Chembiochem : a European journal of chemical biology.

[39]  Beatrix Suess,et al.  Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast , 2007, Nucleic acids research.

[40]  Ali Kinkhabwala,et al.  Uncovering cis Regulatory Codes Using Synthetic Promoter Shuffling , 2008, PloS one.

[41]  A. Heeger,et al.  Micromagnetic selection of aptamers in microfluidic channels , 2009, Proceedings of the National Academy of Sciences.

[42]  J. Keasling,et al.  Engineering a mevalonate pathway in Escherichia coli for production of terpenoids , 2003, Nature Biotechnology.

[43]  M. Famulok,et al.  A novel RNA motif for neomycin recognition. , 1995, Chemistry & biology.

[44]  Heinz-Jürgen Steinhoff,et al.  Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR. , 2011, RNA.

[45]  Timothy S. Ham,et al.  Production of the antimalarial drug precursor artemisinic acid in engineered yeast , 2006, Nature.

[46]  Beatrix Suess,et al.  Screening for engineered neomycin riboswitches that control translation initiation. , 2007, RNA.

[47]  R. Breaker,et al.  Engineering precision RNA molecular switches. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Weiss,et al.  A universal RNAi-based logic evaluator that operates in mammalian cells , 2007, Nature Biotechnology.

[49]  Shana Topp,et al.  Random Walks to Synthetic Riboswitches—A High‐Throughput Selection Based on Cell Motility , 2008, Chembiochem : a European journal of chemical biology.

[50]  J. Gallivan,et al.  Guiding bacteria with small molecules and RNA. , 2007, Journal of the American Chemical Society.

[51]  B. Suess,et al.  Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. , 2010, Angewandte Chemie.

[52]  Barbara Fink,et al.  Molecular analysis of a synthetic tetracycline-binding riboswitch. , 2005, RNA.

[53]  Christina D Smolke,et al.  Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems , 2010, Proceedings of the National Academy of Sciences.

[54]  James J. Collins,et al.  Dispersing biofilms with engineered enzymatic bacteriophage , 2007, Proceedings of the National Academy of Sciences.

[55]  Günter Mayer,et al.  An RNA aptamer that induces transcription. , 2009, Chemistry & biology.

[56]  David R. Liu,et al.  In vivo evolution of an RNA-based transcriptional silencing domain in S. cerevisiae. , 2007, Chemistry & biology.

[57]  James J. Collins,et al.  A Tunable Genetic Switch Based on RNAi and Repressor Proteins for Regulating Gene Expression in Mammalian Cells , 2007, Cell.

[58]  Shuanglin Xiang,et al.  Short hairpin RNA–expressing bacteria elicit RNA interference in mammals , 2006, Nature Biotechnology.

[59]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[60]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[61]  Beatrix Suess,et al.  Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity , 2010, Nucleic acids research.

[62]  Markus Wieland,et al.  Rational design of a small molecule-responsive intramer controlling transgene expression in mammalian cells , 2011, Nucleic acids research.

[63]  S. Maas,et al.  Gene regulation through RNA editing. , 2010, Discovery medicine.

[64]  Ralph Weissleder,et al.  Identification of inhibitors of ribozyme self-cleavage in mammalian cells via high-throughput screening of chemical libraries. , 2006, RNA.

[65]  R. Breaker,et al.  Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.

[66]  Beatrix Suess,et al.  Selection of tetracycline inducible self-cleaving ribozymes as synthetic devices for gene regulation in yeast. , 2011, Molecular bioSystems.

[67]  D. Patel,et al.  Adaptive recognition by nucleic acid aptamers. , 2000, Science.

[68]  Rafael Silva-Rocha,et al.  Mining logic gates in prokaryotic transcriptional regulation networks , 2008, FEBS letters.

[69]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[70]  R R Breaker,et al.  Rational design of allosteric ribozymes. , 1997, Chemistry & biology.

[71]  Ronald R. Breaker,et al.  Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP , 1999, Nature Structural Biology.

[72]  Karl-Dieter Entian,et al.  A fast and efficient translational control system for conditional expression of yeast genes , 2009, Nucleic acids research.

[73]  Joy Sinha,et al.  Reprogramming Bacteria to Seek and Destroy a Herbicide , 2010, Nature chemical biology.

[74]  Jeffrey E. Barrick,et al.  The distributions, mechanisms, and structures of metabolite-binding riboswitches , 2007, Genome Biology.

[75]  M. Win,et al.  A modular and extensible RNA-based gene-regulatory platform for engineering cellular function , 2007, Proceedings of the National Academy of Sciences.

[76]  Markus Wieland,et al.  Improved aptazyme design and in vivo screening enable riboswitching in bacteria. , 2008, Angewandte Chemie.

[77]  Michael Müller,et al.  Thermodynamic characterization of an engineered tetracycline-binding riboswitch , 2006, Nucleic acids research.

[78]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[79]  Jerry Pelletier,et al.  Inhibition of translation by RNA-small molecule interactions. , 2002, RNA.

[80]  A. Ferré-D’Amaré,et al.  Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. , 2008, Chemistry & biology.

[81]  Barbara Fink,et al.  Conditional gene expression by controlling translation with tetracycline-binding aptamers. , 2003, Nucleic acids research.

[82]  S. K. Desai,et al.  Synthetic Riboswitches That Induce Gene Expression in Diverse Bacterial Species , 2010, Applied and Environmental Microbiology.

[83]  M. Elowitz,et al.  Functional roles for noise in genetic circuits , 2010, Nature.

[84]  Lauren Ancel Meyers,et al.  Aptamer Database , 2004, Nucleic Acids Res..