Coupled strained-layer InGaAs quantum-well improvement of an InAs quantum dot AlGaAs–GaAs–InGaAs–InAs heterostructure laser

Data are presented showing that, besides the improvement in carrier collection, it is advantageous to locate strain-matching auxiliary InGaAs layers [quantum wells (QWs)] within tunneling distance of a single-quantum-dot (QD) layer of an AlGaAs–GaAs–InGaAs–InAs QD heterostructure laser to realize also smaller size QDs of greater density and uniformity. The QD density is changed from 2×1010/cm2 for a 50 A GaAs coupling barrier (QW to QD) to 3×1010/cm2 for a 5 A barrier. The improved QD density and uniformity, as well as improved carrier collection, make possible room-temperature continuous-wave (cw) QD+QW laser operation (a single InAs QD layer) at reasonable diode length (∼1 mm), current density 586 A/cm2, and wavelength 1057 nm. The cw 300 K coupled InAs QD and InGaAs QW AlGaAs–GaAs–InGaA–InAs heterostructure lasers are grown by metalorganic chemical vapor deposition.

[1]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[2]  Russell D. Dupuis,et al.  Quantum-well heterostructure lasers , 1980 .

[3]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[4]  A. R. Sugg,et al.  Native oxide top‐ and bottom‐confined narrow stripe p‐n AlyGa1−yAs‐GaAs‐InxGa1−xAs quantum well heterostructure laser , 1993 .

[5]  Dieter Bimberg,et al.  Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition , 1997 .

[6]  Nikolai N. Ledentsov,et al.  InGaAs-GaAs quantum-dot lasers , 1997 .

[7]  A. Stintz,et al.  Optical characteristics of 1.24-μm InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[8]  D. Deppe,et al.  Low-threshold oxide-confined 1.3-μm quantum-dot laser , 2000, IEEE Photonics Technology Letters.

[9]  R. Dupuis,et al.  III-V semiconductor heterojunction devices grown by metalorganic chemical vapor deposition , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  A. Stintz,et al.  The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures , 2000, IEEE Journal of Quantum Electronics.

[11]  Russell D. Dupuis,et al.  Room-temperature continuous photopumped laser operation of coupled InP quantum dot and InGaP quantum well InP–InGaP–In(AlGa)P–InAlP heterostructures , 2001 .