Time-domain approach to the forward scattering sum rule

The forward scattering sum rule relates the extinction cross section integrated over all wavelengths with the polarizability dyadics. It is useful for deriving bounds on the interaction between scatterers and electromagnetic fields, antenna bandwidth and directivity and energy transmission through sub-wavelength apertures. The sum rule is valid for linearly polarized plane waves impinging on linear, passive and time translational invariant scattering objects in free space. Here, a time-domain approach is used to clarify the derivation and the used assumptions. The time-domain forward scattered field defines an impulse response. Energy conservation shows that this impulse response is the kernel of a passive convolution operator, which implies that the Fourier transform of the impulse response is a Herglotz function. The forward scattering sum rule is finally constructed from integral identities for Herglotz functions.

[1]  Anders Karlsson On the time-domain version of the optical theorem , 1998 .

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  J. Jackson,et al.  Classical Electrodynamics, 2nd Edition , 1975 .

[4]  R. Fano Theoretical limitations on the broadband matching of arbitrary impedances , 1950 .

[5]  Mats Gustafsson,et al.  Sum rule for the transmission cross section of apertures in thin opaque screens. , 2009, Optics letters.

[6]  Yunlong Sheng,et al.  Interference of surface waves in a metallic nanoslit. , 2007, Optics express.

[7]  R. Newton Scattering theory of waves and particles , 1966 .

[8]  D. S. Jones SCATTERING BY INHOMOGENEOUS DIELECTRIC PARTICLES , 1985 .

[9]  J. Bladel,et al.  Electromagnetic Fields , 1985 .

[10]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[11]  M. Gustafsson,et al.  Sum rules and constraints on passive systems , 2011 .

[12]  M. Gustafsson,et al.  Physical limitations on antennas of arbitrary shape , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  M. Gustafsson,et al.  A scattering and absorption identity for metamaterials: experimental results and comparison with theory , 2008 .

[14]  M. Gustafsson,et al.  Application of gain-bandwidth bounds on loaded dipoles , 2009 .

[15]  Mats Gustafsson,et al.  On the non-uniqueness of the electromagnetic instantaneous response , 2003 .

[16]  N. Engheta,et al.  Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking , 2008 .

[17]  山岸 進,et al.  「レイリー散乱」(Rayleigh Scattering) , 1983 .

[18]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[19]  A. T. de Hoop A time domain energy theorem for scattering of plane electromagnetic waves , 1984 .

[20]  W. Donoghue Distributions and Fourier transforms , 1969 .

[21]  M. Gustafsson,et al.  Illustrations of New Physical Bounds on Linearly Polarized Antennas , 2009, IEEE Transactions on Antennas and Propagation.

[22]  R. Fan THEORETICAL LIMITATIONS ON THE BROADBAND MATCHING OF ARBITRARY IMPEDANCES * , 2003 .

[23]  Mats Gustafsson,et al.  Physical limitations on broadband scattering by heterogeneous obstacles , 2007 .

[24]  E. S. Shire,et al.  Classical electricity and magnetism , 1960 .

[25]  Mats Gustafsson,et al.  A priori estimates on the partial realized gain of ultra-wideband (UWB) antennas , 2008 .

[26]  E. Guillemin The mathematics of circuit analysis , 1965 .

[27]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[28]  Armen H. Zemanian,et al.  Realizability theory for continuous linear systems , 1972 .

[29]  H. Nussenzveig Causality and dispersion relations , 2012, American Journal of Physics.

[30]  Thomas B. A. Senior,et al.  Rayleigh scattering , 1973 .

[31]  Mats Gustafsson,et al.  Physical limitations on metamaterials: restrictions on scattering and absorption over a frequency interval , 2007 .

[32]  D. Sjöberg Variational principles for the static electric and magnetic polarizabilities of anisotropic media with perfect electric conductor inclusions , 2009 .

[33]  E. Purcell On the Absorption and Emission of Light by Interstellar Grains , 1969 .

[34]  G. Hardy ON HILBERT TRANSFORMS , 1932 .

[35]  T. Kubo,et al.  Electromagnetic Fields , 2008 .

[36]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.