Quantifying the crop management influence on arable soil condition in the Inland Pampa (Argentina)

[1]  H. Morrás Geochemical differentiation of Quaternary sediments from the Pampean region based on soil phosphorus contents as detected in the early 20th century , 1999 .

[2]  A. Romero,et al.  Applying multivariate methods to soil-solution interactions in carbonate media , 2007 .

[3]  Pierre Legendre,et al.  Aquatic heterotrophic bacteria: Modeling in the presence of spatial autocorrelation , 1988 .

[4]  T. Benton,et al.  Farmland biodiversity: is habitat heterogeneity the key? , 2003 .

[5]  C. Braak Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis , 1986 .

[6]  R. Tardiff Methods to assess adverse effects of pesticides on non-target organisms , 1992 .

[7]  Pierre Legendre,et al.  Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei) , 1994, Environmental and Ecological Statistics.

[8]  Christian Kampichler,et al.  Long-term dynamics and interrelationships of soil Collembola and microorganisms in an arable landscape following land use change , 2002 .

[9]  P. Dennis,et al.  Relationships between agricultural management and ecological groups of ground beetles (Coleoptera: Carabidae) on Scottish farmland , 2002 .

[10]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[11]  John H. Grove,et al.  A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina , 2002 .

[12]  F. E. Egler Ecosystems of the World , 1960 .

[13]  A. Soriano Rio de la Plata grasslands , 1992 .

[14]  C.J.F. ter Braak,et al.  Partial canonical correspondence analysis , 1988 .

[15]  G. Blair,et al.  Soil Carbon Fractions Based on their Degree of Oxidation, and the Development of a Carbon Management Index for Agricultural Systems , 1995 .

[16]  Clarence J. Swanton,et al.  Recent improvements in the energy efficiency of agriculture: Case studies from Ontario, Canada , 1996 .

[17]  K. Janssen,et al.  SOIL PROPERTIES AFTER TWENTY YEARS OF FERTILIZATION WITH DIFFERENT NITROGEN SOURCES , 1991 .

[18]  D. W. Nelson,et al.  Total Carbon, Organic Carbon, and Organic Matter , 1983, SSSA Book Series.

[19]  Claudio M. Ghersa,et al.  Evaluation of environmental impact indicators using fuzzy logic to assess the mixed cropping systems of the Inland Pampa, Argentina , 2003 .

[20]  J. Frenguelli,et al.  Loess y limos pampeanos , 1955 .

[21]  T. Fenton,et al.  Erosional impact on organic matter content and productivity of selected Iowa soils , 2005 .

[22]  S. S. Andrews,et al.  DESIGNING A SOIL QUALITY ASSESSMENT TOOL FOR SUSTAINABLE AGROECOSYSTEM MANAGEMENT , 2001 .

[23]  V. R. Tolbert,et al.  Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion , 2002 .

[24]  J. S. Bradley,et al.  Short term impacts of logging on invertebrate communities in jarrah forests in south-west Western Australia , 2002 .

[25]  M. Arshad,et al.  Identifying critical limits for soil quality indicators in agro-ecosystems , 2002 .

[26]  T. Tatoni,et al.  Relative importance of abiotic and land use factors in explaining variation in woody vegetation in a French rural landscape , 1998 .

[27]  Jeffrey R Foster,et al.  Statistical power in forest monitoring , 2001 .

[28]  P. Jeanneret,et al.  Quantifying the impact of landscape and habitat features on biodiversity in cultivated landscapes , 2003 .

[29]  R. H. Økland On the variation explained by ordination and constrained ordination axes , 1999 .

[30]  Hans-Hermann Bock,et al.  Classification and Related Methods of Data Analysis , 1988 .

[31]  Wim Vyverman,et al.  Relationship between Bacterial Community Composition and Bottom-Up versus Top-Down Variables in Four Eutrophic Shallow Lakes , 2002, Applied and Environmental Microbiology.

[32]  W. D. Kemper,et al.  Aggregate Stability and Size Distribution , 2018, SSSA Book Series.

[33]  R. Poppi,et al.  Discrimination of management effects on soil parameters by using principal component analysis: a multivariate analysis case study , 2002 .

[34]  Brian K. Slater,et al.  Soil–landscape resource assessment for plantations — a conceptual framework towards an explicit multi-scale approach , 2000 .

[35]  Jonathan D. Phillips,et al.  An evaluation of the state factor model of soil ecosystems , 1989 .

[36]  A. Bouchard,et al.  Factors affecting plant species distribution in hedgerows of southern Quebec , 2002 .

[37]  Marti J. Anderson,et al.  Partitioning the variation among spatial, temporal and environmental components in a multivariate data set , 1998 .

[38]  Donald A. Jackson,et al.  Variable selection in large environmental data sets using principal components analysis , 1999 .

[39]  John W. Doran,et al.  Soil health and global sustainability: translating science into practice☆ , 2002 .

[40]  Petra Döll,et al.  Global modeling of irrigation water requirements , 2002 .

[41]  W. Parton,et al.  Agricultural intensification and ecosystem properties. , 1997, Science.

[42]  L. Ahuja,et al.  Advances and challenges in predicting agricultural management effects on soil hydraulic properties , 2003 .

[43]  P. Legendre,et al.  Partialling out the spatial component of ecological variation , 1992 .

[44]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[45]  W. D. Basford,et al.  A comparison of energy use in conventional and integrated arable farming systems in the UK , 2003 .

[46]  S. Andrews,et al.  Soil quality: Science and process , 2002 .

[47]  H. Jenny,et al.  The Soil Resource , 1982, Ecological Studies.

[48]  H. Jenny,et al.  Factors of Soil Formation , 1941 .

[49]  J. Timmer,et al.  Spatial analysis of earthworm biodiversity at the regional scale , 2006 .

[50]  C.J.F. ter Braak,et al.  CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4) , 1998 .