New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems

New combining rules are presented for calculating the van der Waals well parametersε andσ as well asC6,C8 andC10 for the mixed rare gas systems from the corresponding values of the homogeneous dimers. The combining rules forε andσ are tested by comparison with the recent compilation of Aziz and found to be superior to the best previous combining rules selected by Aziz. Effective Born-Mayer repulsive potential parameters are determined from the model potential of Tang and Toennies and make possible the calculations of accurate potential curves for all combinations of rare gas atoms.

[1]  M. Hiza,et al.  A correlation for the prediction of interaction energy parameters for mixtures of small molecules , 1970 .

[2]  C. Kong Atomic distortion and the repulsive interactions of the noble gas atoms , 1973 .

[3]  J. Renuncio,et al.  Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long‐range dispersion energy , 1982 .

[4]  R. A. Aziz,et al.  Inert gases : potentials, dynamics, and energy transfer in doped crystals , 1984 .

[5]  J. V. D. Biesen,et al.  Experimental total collision cross sections in the glory region for noble gas systems , 1982 .

[6]  P. Wormer,et al.  Time‐dependent coupled Hartree–Fock calculations of multipole polarizabilities and dispersion interactions in van der Waals dimers consisting of He, H2, Ne, and N2 , 1983 .

[7]  C. Kong Combining rules for intermolecular potential parameters. II. Rules for the Lennard‐Jones (12–6) potential and the Morse potential , 1973 .

[8]  P. Habitz,et al.  The anisotropic van der waals potential for He-N2 , 1982 .

[9]  K. Ng,et al.  A simple reliable approximation for isotropic intermolecular forces. A critical test using HH(3Σu+) as a model , 1978 .

[10]  K. Tang Dynamic Polarizabilities and van der Waals Coefficients , 1969 .

[11]  K. Tang,et al.  A simple theoretical model for the van der Waals potential at intermediate distances. III. Anisotropic potentials of Ar–H2, Kr–H2, and Xe–H2 , 1978 .

[12]  G. Scoles,et al.  Intermolecular forces via hybrid Hartree–Fock–SCF plus damped dispersion (HFD) energy calculations. An improved spherical model , 1982 .

[13]  O. C. Simpson,et al.  Relation between charge and force parameters of closed‐shell atoms and ions , 1975 .

[14]  P. Sikora Combining rules for spherically symmetric intermolecular potentials , 1970 .

[15]  A. Thakkar Bounding and estimation of van der Waals coefficients , 1984 .

[16]  W. J. Stevens,et al.  The dispersion damping functions and interaction energy curves HeHe , 1979 .

[17]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[18]  R. A. Aziz,et al.  An improved potential for Ne–Ar , 1984 .

[19]  R. A. Aziz Interatomic Potentials for Rare-Gases: Pure and Mixed Interactions , 1984 .

[20]  W. Kutzelnigg,et al.  Natural states of interacting systems and their use for the calculation of intermolecular forces.: III. One-term approximations of oscillator strength sums and dynamic polarizabilities , 1978 .

[21]  R. T. Pack,et al.  Multiproperty empirical interatomic potentials for ArXe and KrXe , 1982 .

[22]  R. Good,et al.  New Combining Rule for Intermolecular Distances in Intermolecular Potential Functions , 1970 .

[23]  K. Tang,et al.  Erratum: A simple theoretical model for the van der Waals potential at intermediate distances. I. Spherically symmetric potentials , 1977 .

[24]  T. Gilbert,et al.  Soft‐Sphere Model for Closed‐Shell Atoms and Ions , 1968 .

[25]  William J. Meath,et al.  Dispersion energy constants C 6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O , 1977 .

[26]  G. L. Findley,et al.  Molecular Rydberg transitions. XII. Magnetic circular dichroism of methyl iodide , 1978 .

[27]  F. Pirani,et al.  An accurate Ne—Ar interatomic potential , 1982 .

[28]  J. M. Norbeck,et al.  Upper and lower bounds of two‐ and three‐body dipole, quadrupole, and octupole van der Waals coefficients for hydrogen, noble gas, and alkali atom interactions , 1976 .

[29]  K. Tang,et al.  A simple theoretical model for the van der Waals potential at intermediate distances. IV. The bond distance dependence of the potential hypersurfaces for He–H2 and Ne–H2 also for the repulsive region , 1982 .

[30]  H. Böhm,et al.  A study of short‐range repulsions , 1982 .

[31]  F. Smith Atomic Distortion and the Combining Rule for Repulsive Potentials , 1972 .

[32]  J. Renuncio,et al.  Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long‐range dispersion energy and an atomic distortion model for the repulsive interactions. , 1982 .

[33]  J. McCoubrey,et al.  Intermolecular forces between unlike molecules. A more complete form of the combining rules , 1960 .

[34]  M. R. Chakrabarty,et al.  Combining rules for intermolecular potential parameters. III. Application to the exp 6 potential , 1973 .