A priori mesh quality estimation via direct relation between truncation error and mesh distortion

The purpose of the present work is the derivation and evaluation of a priori mesh quality indicators for structured, unstructured, as well as hybrid grids. Emphasis is placed on deriving direct relations between the indicators and mesh distortion. The work is based on use of the finite volume discretization for evaluation of first order spatial derivatives. The analytic form of the truncation error is derived and applied to elementary types of mesh distortion including typical hybrid grid interfaces. The corresponding analytic expressions provide direct relations between computational accuracy and the degree of stretching, skewness, shearing and non-alignment of the mesh.

[1]  Meng Wang,et al.  Analysis of stability and accuracy of finite-difference schemes on a skewed mesh , 2006, J. Comput. Phys..

[2]  Yannis Kallinderis,et al.  A new adaptive algorithm for turbulent flows , 1992 .

[3]  Joe F. Thompson,et al.  Numerical grid generation , 1985 .

[4]  J. Ferziger,et al.  An adaptive multigrid technique for the incompressible Navier-Stokes equations , 1989 .

[5]  Malcolm L. Spaulding,et al.  A study of the effects of grid non-orthogonality on the solution of shallow water equations in boundary-fitted coordinate systems , 2003 .

[6]  Eli Turkel,et al.  Accuracy of schemes with nonuniform meshes for compressible fluid flows , 1986 .

[7]  A. D. Gosman,et al.  Element residual error estimate for the finite volume method , 2003 .

[8]  Jean-Yves Trépanier,et al.  A comparison of three error estimation techniques for finite-volume solutions of compressible flows , 2000 .

[9]  Behzad Ataie-Ashtiani,et al.  Error analysis of finite difference methods for two-dimensional advection-dispersion-reaction equation , 2005 .

[10]  D. Scott McRae,et al.  r-Refinement grid adaptation algorithms and issues , 2000 .

[11]  Rafael Montenegro,et al.  Smoothing and local refinement techniques for improving tetrahedral mesh quality , 2005 .

[12]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[13]  Yih Nen Jeng,et al.  Truncation error analysis of the finite volume method for a model steady convective equation , 1992 .

[14]  Charles Hirsch,et al.  Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .

[15]  P. Knupp Algebraic mesh quality metrics for unstructured initial meshes , 2003 .

[16]  Yusheng Feng,et al.  Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty , 2005 .

[17]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[18]  François Guibault,et al.  An analysis of simplex shape measures for anisotropic meshes , 2005 .

[19]  P. Knupp,et al.  Triangular and quadrilateral surface mesh quality optimization using local parametrization , 2004 .

[20]  A. D. Gosman,et al.  AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 1: A-POSTERIORI ERROR ESTIMATES , 2000 .

[21]  C. Hirsch,et al.  Fundamentals of numerical discretization , 1988 .

[22]  Y. Kallinderis Numerical treatment of grid interfaces to viscous flow , 1992 .

[23]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[24]  Timothy A. Davis Symbolic Math Toolbox , 2010 .

[25]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[26]  Michael B. Giles,et al.  Accuracy of node-based solutions on irregular meshes , 1989 .

[27]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[28]  T. J. Baker,et al.  Adaptive modification of time evolving meshes , 2005 .

[29]  T. Barth Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations , 1994 .

[30]  Antony Jameson,et al.  An adaptive multigrid method for the euler equations , 1985 .

[31]  Y. Kallinderis Grid adaptation by redistribution and local embedding , 1996 .

[32]  A. D. Gosman,et al.  Automatic resolution control for the finite-volume method. Part 3: Turbulent flow applications , 2000 .

[33]  Yannis Kallinderis,et al.  Viscous Grids and Assessment of their Quality , 2001 .

[34]  Paul A. Durbin,et al.  Mesh stretch effects on convection in flow simulations , 2004 .