Sensing Cox Processes via Posterior Sampling and Positive Bases

We study adaptive sensing of Cox point processes, a widely used model from spatial statistics. We introduce three tasks: maximization of captured events, search for the maximum of the intensity function and learning level sets of the intensity function. We model the intensity function as a sample from a truncated Gaussian process, represented in a specially constructed positive basis. In this basis, the positivity constraint on the intensity function has a simple form. We show how an minimal description positive basis can be adapted to the covariance kernel, non-stationarity and make connections to common positive bases from prior works. Our adaptive sensing algorithms use Langevin dynamics and are based on posterior sampling (Cox-Thompson) and top-two posterior sampling (Top2) principles. With latter, the difference between samples serves as a surrogate to the uncertainty. We demonstrate the approach using examples from environmental monitoring and crime rate modeling, and compare it to the classical Bayesian experimental design approach.

[1]  Alkis Gotovos,et al.  Active Learning for Level Set Estimation , 2022 .

[2]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[3]  Eric Moulines,et al.  Sampling from a log-concave distribution with compact support with proximal Langevin Monte Carlo , 2017, COLT.

[4]  Heather J. Lynch,et al.  SealNet: A fully-automated pack-ice seal detection pipeline for sub-meter satellite imagery , 2020 .

[5]  Peter Auer,et al.  Using Confidence Bounds for Exploitation-Exploration Trade-offs , 2003, J. Mach. Learn. Res..

[6]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[7]  Walter T. Federer,et al.  Sequential Design of Experiments , 1967 .

[8]  Adam N. Letchford,et al.  Adaptive Policies for Perimeter Surveillance Problems , 2018, Eur. J. Oper. Res..

[9]  Eric Moulines,et al.  Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau , 2016, SIAM J. Imaging Sci..

[10]  Volkan Cevher,et al.  Mirrored Langevin Dynamics , 2018, NeurIPS.

[11]  Martin J. Wainwright,et al.  Log-concave sampling: Metropolis-Hastings algorithms are fast! , 2018, COLT.

[12]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[13]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[14]  Mohamed-Jalal Fadili,et al.  Wasserstein Control of Mirror Langevin Monte Carlo , 2020, COLT.

[15]  Jürgen Symanzik,et al.  Statistical Analysis of Spatial Point Patterns , 2005, Technometrics.

[16]  Alan E. Gelfand,et al.  Space and circular time log Gaussian Cox processes with application to crime event data , 2016, 1611.08719.

[17]  Benjamin Van Roy,et al.  A Tutorial on Thompson Sampling , 2017, Found. Trends Mach. Learn..

[18]  Daniel Russo,et al.  Simple Bayesian Algorithms for Best Arm Identification , 2016, COLT.

[19]  Donald Goldfarb,et al.  A numerically stable dual method for solving strictly convex quadratic programs , 1983, Math. Program..

[20]  Gábor Rudolf,et al.  Arrival rate approximation by nonnegative cubic splines , 2005, 2005 IEEE International Conference on Electro Information Technology.

[21]  Dino Sejdinovic,et al.  Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences , 2018, ArXiv.

[22]  P. Diggle,et al.  Estimating weighted integrals of the second-order intensity of a spatial point process , 1989 .

[23]  Hassan Maatouk,et al.  Gaussian Process Emulators for Computer Experiments with Inequality Constraints , 2016, Mathematical Geosciences.

[24]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[25]  Dávid Papp,et al.  Shape-Constrained Estimation Using Nonnegative Splines , 2014 .

[26]  Karolin Papst,et al.  Techniques Of Variational Analysis , 2016 .

[27]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[28]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[29]  J. Heikkinen,et al.  Modeling a Poisson forest in variable elevations: a nonparametric Bayesian approach. , 1999, Biometrics.

[30]  Donald L. Snyder,et al.  Random Point Processes in Time and Space , 1991 .

[31]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[32]  Nicolas Gillis,et al.  The Why and How of Nonnegative Matrix Factorization , 2014, ArXiv.

[33]  Andreas Krause,et al.  Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features , 2018, NeurIPS.

[34]  Andrés F. López-Lopera,et al.  Gaussian Process Modulated Cox Processes under Linear Inequality Constraints , 2019, AISTATS.

[35]  Andreas Krause,et al.  No-regret Algorithms for Capturing Events in Poisson Point Processes , 2021, ICML.

[36]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[37]  James Hensman,et al.  Large-Scale Cox Process Inference using Variational Fourier Features , 2018, ICML.

[38]  Olivier Roustant,et al.  Finite-dimensional Gaussian approximation with linear inequality constraints , 2017, SIAM/ASA J. Uncertain. Quantification.

[39]  Yee Whye Teh,et al.  Poisson intensity estimation with reproducing kernels , 2016, AISTATS.

[40]  D. Cox Some Statistical Methods Connected with Series of Events , 1955 .

[41]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[42]  Peter J. Diggle,et al.  Spatial and spatio-temporal Log-Gaussian Cox processes:extending the geostatistical paradigm , 2013, 1312.6536.

[43]  Adrian N. Bishop,et al.  Fast Bayesian Intensity Estimation for the Permanental Process , 2017, ICML.

[44]  Virgilio Gómez-Rubio,et al.  Spatial Point Patterns: Methodology and Applications with R , 2016 .

[45]  Ryan P. Adams,et al.  Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities , 2009, ICML '09.

[46]  Francisco Herrera,et al.  Whale counting in satellite and aerial images with deep learning , 2019, Scientific Reports.