Waveform Relaxation Method for Reactor Transient Analysis

We investigate the concurrent solution of differential equations by the waveform relaxation (WR) method, an iterative method for analyzing linear and nonlinear dynamical systems in the time do-main. The method, at each iteration, decomposes the dynamical system into several subsystems, each of which is analyzed for the entire given time interval. The method, when efficiently implemented, results in algorithms with a highly parallelizable concurrent fraction. In this paper, the waveform relaxation method is introduced and applied to two types of reactor dynamics problems. It is concluded that the U method can be applied to reactor dynamics equations, but that its parallel performance on the KMRR dynamics is only modest.