Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst

[1]  João Lúcio de Azevedo,et al.  Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water‐Splitting Photocathodes , 2014 .

[2]  O. Hansen,et al.  MoS2-an integrated protective and active layer on n(+)p-Si for solar H2 evolution. , 2013, Physical chemistry chemical physics : PCCP.

[3]  S. Campidelli,et al.  A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. , 2013, Energy, sustainability and society.

[4]  H. Vrubel,et al.  Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving Catalyst , 2013 .

[5]  Minglong Zhang,et al.  Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook , 2013 .

[6]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[7]  Peng Wang,et al.  Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. , 2013, ACS nano.

[8]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[9]  James R. McKone,et al.  Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. , 2013, Journal of the American Chemical Society.

[10]  H. Vrubel,et al.  Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. , 2012, Angewandte Chemie.

[11]  Chia-Yu Lin,et al.  Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting , 2012 .

[12]  James R. McKone,et al.  Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes , 2012 .

[13]  S. Dahl,et al.  Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode. , 2012, Angewandte Chemie.

[14]  Nripan Mathews,et al.  Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability , 2012 .

[15]  Jan C. Brauer,et al.  Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy , 2012 .

[16]  H. Vrubel,et al.  Hydrogen evolution catalyzed by MoS3 and MoS2 particles , 2012 .

[17]  H. Vrubel,et al.  Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water , 2011 .

[18]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[19]  Ib Chorkendorff,et al.  Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.

[20]  Nathan S Lewis,et al.  Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.

[21]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[22]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[23]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[24]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[25]  Adam Heller,et al.  Efficient p ‐ InP ( Rh ‐ H alloy ) and p ‐ InP ( Re ‐ H alloy ) Hydrogen Evolving Photocathodes , 1982 .