Multi-objective parameter optimization of multi-pass CNC machining

In a multi-pass milling process, energy consumption is highly dependent of the choice of cutting parameters for each pass and the total number of passes. This paper first analyzes the energy consumption of multi-pass CNC milling, based on which a multi-objective optimization model is proposed to maximize energy efficiency and minimize production cost. A case study is then carried out to explore the difference of the proposed multi-objective optimization and mono-objective ones (i.e., either maximum energy efficiency or minimum cost).

[1]  Stefan Velchev,et al.  Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning , 2014 .

[2]  Sung-Hoon Ahn,et al.  Empirical power-consumption model for material removal in three-axis milling , 2014 .

[3]  Lin Li,et al.  Multi-objective optimization of milling parameters – the trade-offs between energy, production rate and cutting quality , 2013 .

[4]  P. J. Pawar,et al.  Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms , 2010, Appl. Soft Comput..

[5]  Congbo Li,et al.  Multi-objective parameter optimization of CNC machining for low carbon manufacturing , 2015 .

[6]  T. Gutowski,et al.  Electrical Energy Requirements for Manufacturing Processes , 2006 .

[7]  Cristian Caizar,et al.  Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg3 , 2011 .

[8]  Türkay Dereli,et al.  Dynamic optimization of multipass milling operations via geometric programming , 1999 .

[9]  S. Pal,et al.  Adaptive Multi-objective Particle Swarm Optimization Algorithm , 2007 .

[10]  João Paulo Davim,et al.  Optimisation of multi-pass cutting parameters in face-milling based on genetic search , 2009 .

[11]  Harsh Y. Valera,et al.  Experimental Investigation of Surface Roughness and Power Consumption in Turning Operation of EN 31 Alloy Steel , 2014 .

[12]  Gianni Campatelli,et al.  Optimization of process parameters using a Response Surface Method for minimizing power consumption in the milling of carbon steel , 2014 .

[13]  Bilgin Tolga Simsek,et al.  Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments , 2013 .

[14]  Ahmed A. D. Sarhan,et al.  Investigating the Minimum Quantity Lubrication in grinding of Al2O3 engineering ceramic , 2014 .

[15]  Wenhe Liao,et al.  Optimization of multi-pass face milling using a fuzzy particle swarm optimization algorithm , 2011 .

[16]  R. Saravanan,et al.  Selection of optimal machining parameters for multi-tool milling operations using a memetic algorithm , 2006 .

[17]  Yan He,et al.  Characteristics of Additional Load Losses of Spindle System of Machine Tools , 2010 .

[18]  Sourabh Saha,et al.  Genetic algorithm based optimization and post optimality analysis of multi-pass face milling , 2009, ArXiv.

[19]  T. Gutowski,et al.  Environmentally benign manufacturing: Observations from Japan, Europe and the United States , 2005 .

[20]  Paul Mativenga,et al.  Modelling of direct energy requirements in mechanical machining processes , 2013 .

[21]  C. Wang,et al.  A Modified Genetic Algorithm Based Optimisation of Milling Parameters , 1999 .

[22]  Paul Mativenga,et al.  Sustainable machining: selection of optimum turning conditions based on minimum energy considerations , 2010 .