Computational prediction of out-of-plane welding distortion and experimental investigation

The main aim of the work was to investigate a simplified finite element simulation of the out-of-plane distortion caused by fusion butt welding. The thermal transient part of the simulation made use of a finite element analysis of the two-dimensional cross-section of the weld joint and the thermoelastic-plastic treatment was based on analytical algorithms describing transverse and longitudinal deformations, leading to predictions of transverse angular deformation and longitudinal contraction force. These results were then applied to a non-linear elastic finite element model to provide predictions of the final angular and overall deformations of the butt-welded plates. The validity of the simulation was investigated via full-scale tests on 4m x 1.4m x 5 mm steel plates, butt welded using a flux-cored Ar-CO2 metal-inert gas process. Thermography and thermocouple arrays were used to validate the thermal transient computations and out-of-plane deformations were measured using displacement transducers for transient deformations and a laser scanning system to measure the profiles of the whole plates before and after welding. The results of six full-scale tests are given and comparison with the simulations shows that the procedure provides good prediction of the angular and overall out-of-plane deformations. Prediction accuracy requires account to be taken of initial shape, gravity loading, and support conditions.