THE GROWTH OF MASSIVE GALAXIES SINCE z = 2

We study the growth of massive galaxies from z = 2 to the present using data from the NOAO/Yale NEWFIRM Medium Band Survey. The sample is selected at a constant number density of n = 2 × 10−4 Mpc−3, so that galaxies at different epochs can be compared in a meaningful way. We show that the stellar mass of galaxies at this number density has increased by a factor of ≈2 since z = 2, following the relation log Mn(z) = 11.45 − 0.15z. In order to determine at what physical radii this mass growth occurred, we construct very deep stacked rest-frame R-band images of galaxies with masses near Mn(z), at redshifts 〈z〉 = 0.6, 1.1, 1.6, and 2.0. These image stacks of typically 70–80 galaxies enable us to characterize the stellar distribution to surface brightness limits of ∼28.5 mag arcsec−2. We find that massive galaxies gradually built up their outer regions over the past 10 Gyr. The mass within a radius of r = 5 kpc is nearly constant with redshift, whereas the mass at 5 kpc < r < 75 kpc has increased by a factor of ∼4 since z = 2. Parameterizing the surface brightness profiles, we find that the effective radius and Sersic n parameter evolve as re ∝ (1 + z)−1.3 and n ∝ (1 + z)−1.0, respectively. The data demonstrate that massive galaxies have grown mostly inside-out, assembling their extended stellar halos around compact, dense cores with possibly exponential radial density distributions. Comparing the observed mass evolution to the average star formation rates of the galaxies we find that the growth is likely dominated by mergers, as in situ star formation can only account for ∼20% of the mass buildup from z = 2 to z = 0. A direct consequence of these results is that massive galaxies do not evolve in a self-similar way: their structural profiles change as a function of redshift, complicating analyses which (often implicitly) assume self-similarity. The main uncertainties in this study are possible redshift-dependent systematic errors in the total stellar masses and the conversion from light-weighted to mass-weighted radial profiles.

[1]  A. Cimatti,et al.  DYNAMICAL MASSES OF EARLY-TYPE GALAXIES AT z ∼ 2: ARE THEY TRULY SUPERDENSE? , 2009, Proceedings of the International Astronomical Union.

[2]  J. Brinchmann,et al.  ON THE MASSES OF GALAXIES IN THE LOCAL UNIVERSE , 2010, 1009.1620.

[3]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[4]  G. Brammer,et al.  THE DEAD SEQUENCE: A CLEAR BIMODALITY IN GALAXY COLORS FROM z = 0 to z = 2.5 , 2009, 0910.2227.

[5]  M. Franx,et al.  HOW MASSIVE ARE MASSIVE COMPACT GALAXIES? , 2009, 0909.5182.

[6]  G. Illingworth,et al.  THE HUBBLE SEQUENCE BEYOND z = 2 FOR MASSIVE GALAXIES: CONTRASTING LARGE STAR-FORMING AND COMPACT QUIESCENT GALAXIES , 2009, 0909.0260.

[7]  T. Tal,et al.  THE FREQUENCY OF TIDAL FEATURES ASSOCIATED WITH NEARBY LUMINOUS ELLIPTICAL GALAXIES FROM A STATISTICALLY COMPLETE SAMPLE , 2009, 0908.1382.

[8]  T. Ichikawa,et al.  MOIRCS DEEP SURVEY. IV. EVOLUTION OF GALAXY STELLAR MASS FUNCTION BACK TO z ∼ 3 , 2009, 0907.0133.

[9]  P. Dokkum,et al.  A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186 , 2009, Nature.

[10]  P. Dokkum,et al.  A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z∼ 2.3: COMPARISON OF STELLAR POPULATION SYNTHESIS CODES AND CONSTRAINTS FROM THE REST-FRAME NIR , 2009, 0906.2012.

[11]  Oxford,et al.  Stellar velocity profiles and line strengths out to four effective radii in the early-type galaxies NGC 3379 and 821 , 2009, 0906.0018.

[12]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[13]  F.,et al.  THE ORIGIN OF COLOR GRADIENTS IN EARLY-TYPE SYSTEMS AND THEIR COMPACTNESS AT HIGH-z , 2009, 0905.0791.

[14]  H. Rix,et al.  ON THE SIZE AND COMOVING MASS DENSITY EVOLUTION OF EARLY-TYPE GALAXIES , 2009, 0903.4857.

[15]  J. Ostriker,et al.  GRAVITATIONAL HEATING HELPS MAKE MASSIVE GALAXIES RED AND DEAD , 2009, 0903.2840.

[16]  T. Lauer,et al.  Compact high-redshift galaxies are the cores of the most massive present-day spheroids , 2009, 0903.2479.

[17]  T. Tal,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 12/14/05 THE RELATION BETWEEN COMPACT, QUIESCENT HIGH REDSHIFT GALAXIES AND MASSIVE NEARBY ELLIPTICAL GALAXIES: EVIDENCE FOR HIERARCHICAL, INSIDE-OUT GR , 2022 .

[18]  J. Ostriker,et al.  MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES , 2009, 0903.1636.

[19]  I. Trujillo,et al.  MILD VELOCITY DISPERSION EVOLUTION OF SPHEROID-LIKE MASSIVE GALAXIES SINCE z ∼ 2 , 2009, 0902.4893.

[20]  R. Smith,et al.  On the origin of the scatter around the Fundamental Plane: correlations with stellar population parameters , 2009, 0902.4383.

[21]  P. Hopkins,et al.  RECOVERING STELLAR POPULATION PROPERTIES AND REDSHIFTS FROM BROADBAND PHOTOMETRY OF SIMULATED GALAXIES: LESSONS FOR SED MODELING , 2009, 0901.4337.

[22]  Yicheng Guo,et al.  Structural Properties of Central Galaxies in Groups and Clusters , 2009, 0901.1150.

[23]  I. Trujillo,et al.  SUPERDENSE MASSIVE GALAXIES IN THE NEARBY UNIVERSE , 2009, Proceedings of the International Astronomical Union.

[24]  G. Brammer,et al.  The NEWFIRM Medium-Band Survey: Filter Definitions and First Results , 2009, 0901.0551.

[25]  James E. Larkin,et al.  DYNAMICS OF GALACTIC DISKS AND MERGERS AT z ∼ 1.6: SPATIALLY RESOLVED SPECTROSCOPY WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS , 2008, 0810.5599.

[26]  M. Bernardi,et al.  The luminosity and stellar mass Fundamental Plane of early‐type galaxies , 2008, 0810.4924.

[27]  Ralf Bender,et al.  STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES , 2008, 0810.1681.

[28]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[29]  P. Hopkins,et al.  DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. IV. EVOLUTION IN THE SCALING RELATIONS OF SPHEROIDS , 2008, 0807.2868.

[30]  T. Lauer,et al.  DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. II. “CUSP” ELLIPTICALS , 2008, 0805.3533.

[31]  S. Wuyts,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.

[32]  L. Danese,et al.  The Dramatic Size Evolution of Elliptical Galaxies and the Quasar Feedback , 2008, 0809.4574.

[33]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[34]  E. Gawiser,et al.  THE EVOLUTION OF THE SPECIFIC STAR FORMATION RATE OF MASSIVE GALAXIES TO z ∼ 1.8 IN THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2008, 0809.1426.

[35]  Marijn Franx,et al.  Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.

[36]  G. Brammer,et al.  A Confirmation of the Strong Clustering of Distant Red Galaxies at 2 < z < 3 , 2008, 0808.0911.

[37]  H. Ford,et al.  Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0 , 2008, 0808.0077.

[38]  S. Wuyts,et al.  FIREWORKS U38-to-24 μm Photometry of the GOODS Chandra Deep Field-South: Multiwavelength Catalog and Total Infrared Properties of Distant Ks-selected Galaxies , 2008 .

[39]  Mark Dickinson,et al.  Size Evolution of the Most Massive Galaxies at 1.7 < z < 3 from GOODS NICMOS Survey Imaging , 2008, 0807.4141.

[40]  Cea,et al.  RED NUGGETS AT z ∼ 1.5: COMPACT PASSIVE GALAXIES AND THE FORMATION OF THE KORMENDY RELATION , 2008, 0807.1744.

[41]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[42]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[43]  L. Cowie,et al.  Accepted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj AN INTEGRATED PICTURE OF STAR FORMATION, METALLICITY EVOLUTION, AND GALACTIC STELLAR MASS ASSEMBLY 1 , 2022 .

[44]  Daniel J. Eisenstein,et al.  Luminosity Function Constraints on the Evolution of Massive Red Galaxies since z ~ 0.9 , 2008, 0804.4516.

[45]  A. V. D. Wel,et al.  Spatially Resolved Stellar Kinematics of Field Early-Type Galaxies at z = 1: Evolution of the Rotation Rate , 2008, 0804.4228.

[46]  M. White,et al.  Red Galaxy Growth and the Halo Occupation Distribution , 2008, 0804.2293.

[47]  G. Zamorani,et al.  GMASS ultradeep spectroscopy of galaxies at $z$ ~ 2 - II. Superdense passive galaxies: how did they form and evolve? , 2008, 0801.1184.

[48]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[49]  R. Nichol,et al.  The 2dF-SDSS LRG and QSO Survey: evolution of the clustering of luminous red galaxies since z= 0.6 , 2008, 0802.4288.

[50]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[51]  A. Cimatti,et al.  Kinemetry of SINS High-Redshift Star-Forming Galaxies: Distinguishing Rotating Disks from Major Mergers , 2008, 0802.0879.

[52]  Cambridge,et al.  The evolution of stellar mass and the implied star formation history , 2008, 0801.1594.

[53]  E. Gawiser,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z ∼ 2.3: REDSHIFTS AND IMPLICATIONS FOR BROADBAND PHOTOMETRIC STUDIES 1,2 , 2022 .

[54]  Yicheng Guo,et al.  Ongoing assembly of massive galaxies by major merging in large groups and clusters from the SDSS , 2007, 0710.2157.

[55]  P. Dokkum,et al.  Evidence of Cosmic Evolution of the Stellar Initial Mass Function , 2007, 0710.0875.

[56]  E. McGrath,et al.  Morphologies of Two Massive Old Galaxies at z ~ 2.5 , 2007, 0710.0426.

[57]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[58]  A. Szalay,et al.  GALAXY LUMINOSITY FUNCTIONS TO Z ∼ 1: DEEP2 VS. COMBO-17 AND IMPLICATIONS FOR RED GALAXY FORMATION 1 , 2008 .

[59]  R. Dav'e The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function? , 2007, 0710.0381.

[60]  C. Conselice,et al.  Strong size evolution of the most massive galaxies since z~2 , 2007, 0709.0621.

[61]  S. Tremaine,et al.  The Black Hole Mass and Extreme Orbital Structure in NGC 1399 , 2007, 0709.0585.

[62]  S. White,et al.  Galaxy growth in the concordance ΛCDM cosmology , 2007, 0708.1814.

[63]  M. Franx,et al.  Hubble Space Telescope and Spitzer Imaging of Red and Blue Galaxies at z ~ 2.5: A Correlation between Size and Star Formation Activity from Compact Quiescent Galaxies to Extended Star-forming Galaxies , 2007, 0707.4484.

[64]  A. Dekel,et al.  Gravitational quenching in massive galaxies and clusters by clumpy accretion , 2007, 0707.1214.

[65]  Mark Dickinson,et al.  Multiwavelength Constraints on the Cosmic Star Formation History from Spectroscopy: The Rest-Frame Ultraviolet, Hα, and Infrared Luminosity Functions at Redshifts 1.9 ≲ z ≲ 3.4 , 2007, 0706.4091.

[66]  Harald Kuntschner,et al.  The SAURON project – IX. A kinematic classification for early‐type galaxies , 2007, astro-ph/0703531.

[67]  H. Rix,et al.  The Dependence of Star Formation on Galaxy Stellar Mass , 2007, astro-ph/0702208.

[68]  D. Thompson,et al.  The Redshift Evolution of Early-Type Galaxies in COSMOS: Do Massive Early-Type Galaxies Form by Dry Mergers? , 2007, astro-ph/0701746.

[69]  P. Temi,et al.  Far-Infrared Spitzer Observations of Elliptical Galaxies: Evidence for Extended Diffuse Dust , 2007, astro-ph/0701431.

[70]  S. M. Fall,et al.  S-COSMOS: The Spitzer Legacy Survey of the Hubble Space Telescope ACS 2 deg2 COSMOS Field I: Survey Strategy and First Analysis , 2007, astro-ph/0701318.

[71]  P. Hall,et al.  The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Near-Infrared Imaging and the Selection of Distant Galaxies , 2006, astro-ph/0612612.

[72]  M. White,et al.  Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering , 2006, astro-ph/0611901.

[73]  M. Brodwin,et al.  The Evolving Luminosity Function of Red Galaxies , 2006, astro-ph/0609584.

[74]  P. Dokkum,et al.  The Star Formation Epoch of the Most Massive Early-Type Galaxies , 2006, astro-ph/0609587.

[75]  E. L. Wright,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[76]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[77]  P. Dokkum,et al.  Dynamical Models of Elliptical Galaxies in z = 0.5 Clusters. II. Mass-to-Light Ratio Evolution without Fundamental Plane Assumptions , 2006, astro-ph/0611577.

[78]  P. P. van der Werf,et al.  NICMOS Imaging of DRGs in the HDF-S: A Relation between Star Formation and Size at z ~ 2.5 , 2006, astro-ph/0611245.

[79]  N. Ball,et al.  Galaxy colour, morphology and environment in the Sloan Digital Sky Survey , 2006, astro-ph/0610171.

[80]  Monteporzio,et al.  The Galaxy Mass Function up to z=4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies ⋆ , 2006, astro-ph/0609068.

[81]  H. Rix,et al.  Spectroscopic Identification of Massive Galaxies at z ~ 2.3 with Strongly Suppressed Star Formation , 2006, astro-ph/0608446.

[82]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[83]  H. Rix,et al.  Comparing Dynamical and Photometric Mass Estimates of Low- and High-Redshift Galaxies: Random and Systematic Uncertainties , 2006, astro-ph/0607649.

[84]  P. P. van der Werf,et al.  Measuring the Average Evolution of Luminous Galaxies at z < 3: The Rest-Frame Optical Luminosity Density, Spectral Energy Distribution, and Stellar Mass Density , 2006, astro-ph/0606536.

[85]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[86]  H. Rix,et al.  The Space Density and Colors of Massive Galaxies at 2 < z < 3: The Predominance of Distant Red Galaxies , 2006, astro-ph/0601113.

[87]  G. Rieke,et al.  Mid-Infrared Properties of X-Ray Sources in the Extended Groth Strip , 2005, astro-ph/0512618.

[88]  Ssc,et al.  Spitzer Observations of Massive, Red Galaxies at High Redshift , 2005, astro-ph/0511289.

[89]  J. Brinkmann,et al.  Gas infall and stochastic star formation in galaxies in the local universe , 2005, astro-ph/0510405.

[90]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[91]  R. Davé,et al.  Galaxy Merger Statistics and Inferred Bulge-to-Disk Ratios in Cosmological SPH Simulations , 2005, astro-ph/0509474.

[92]  Chien Y. Peng,et al.  Dry Mergers in GEMS: The Dynamical Evolution of Massive Early-Type Galaxies , 2005, astro-ph/0506425.

[93]  P. P. van der Werf,et al.  The Size Evolution of Galaxies since z~3: Combining SDSS, GEMS, and FIRES , 2005, astro-ph/0504225.

[94]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[95]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[96]  P. Dokkum,et al.  The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers , 2005, astro-ph/0506661.

[97]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[98]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[99]  D. Kelson,et al.  Spectroscopic Confirmation of Multiple Red Galaxy-Galaxy Mergers in MS 1054–03 (z = 0.83) , 2005, astro-ph/0505355.

[100]  R. Nichol,et al.  The Environmental Dependence of Galaxy Colors in Intermediate-Redshift X-Ray-selected Clusters , 2005, astro-ph/0503480.

[101]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[102]  T. Treu,et al.  Keck Spectroscopy of Distant GOODS Spheroidal Galaxies: Downsizing in a Hierarchical Universe , 2005, astro-ph/0502028.

[103]  Fabrizio Brighenti,et al.  The Ages of Elliptical Galaxies from Mid-Infrared Emission , 2004, astro-ph/0412102.

[104]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[105]  R. Bender,et al.  The Epochs of Early-Type Galaxy Formation as a Function of Environment , 2004, astro-ph/0410209.

[106]  P. V. van Dokkum THE RECENT AND CONTINUING ASSEMBLY OF FIELD ELLIPTICALS BY RED MERGERS , 2005 .

[107]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[108]  J. Brinkmann,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004, astro-ph/0410166.

[109]  R. Bender,et al.  Comparing spectroscopic and photometric stellar mass estimates , 2004, astro-ph/0410084.

[110]  M. Dickinson,et al.  Evolution in the Color-Magnitude Relation of Early-Type Galaxies in Clusters of Galaxies at z ≃ 1 , 2004, astro-ph/0503367.

[111]  P. P. van der Werf,et al.  Stellar Populations and Kinematics of Red Galaxies at z > 2: Implications for the Formation of Massive Galaxies , 2004, astro-ph/0404471.

[112]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[113]  P. Prugniel,et al.  Hyperleda. I. Identification and designation of galaxies , 2003 .

[114]  P. P. van der Werf,et al.  The Rest-Frame Optical Luminosity Density, Color, and Stellar Mass Density of the Universe from z = 0 to z = 3 , 2003, astro-ph/0307149.

[115]  M. Bershady,et al.  A Direct Measurement of Major Galaxy Mergers at z ≲ 3 , 2003, astro-ph/0306106.

[116]  J. Cuby,et al.  Hα Spectroscopy of Galaxies at z > 2: Kinematics and Star Formation , 2003, astro-ph/0303392.

[117]  J. Brinkmann,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[118]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[119]  Rodger I. Thompson,et al.  Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations , 2002, astro-ph/0210129.

[120]  R. Nichol,et al.  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[121]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[122]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[123]  P. P. van der Werf,et al.  Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts , 2002, astro-ph/0212236.

[124]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[125]  P. Hall,et al.  Dynamically Close Galaxy Pairs and Merger Rate Evolution in the CNOC2 Redshift Survey , 2001, astro-ph/0109428.

[126]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[127]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[128]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[129]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[130]  D. Fabricant,et al.  A High Merger Fraction in the Rich Cluster MS 1054–03 at z = 0.83: Direct Evidence for Hierarchical Formation of Massive Galaxies , 1999, astro-ph/9905394.

[131]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[132]  M. Giavalisco,et al.  Infrared Observations of Nebular Emission Lines from Galaxies at z ≃ 3 , 1998, astro-ph/9806219.

[133]  P. Prugniel,et al.  Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies , 1998 .

[134]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[135]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[136]  I. Jørgensen,et al.  Spectroscopy for E and S0 galaxies in nine clusters , 1995 .

[137]  M. Bershady,et al.  The Hubble Space Telescope Medium Deep Survey with the Wide Field and Planetary Camera. 1: Methodology and results on the field near 3C 273 , 1994 .

[138]  William C. Keel,et al.  A SIMPLE, PHOTOMETRICALLY ACCURATE ALGORITHM FOR DECONVOLUTION OF OPTICAL IMAGES , 1991 .

[139]  T. Heckman,et al.  Major and minor axis kinematics of 22 ellipticals , 1989 .

[140]  S. Faber,et al.  Spectroscopy and Photometry of Elliptical Galaxies. VI. Sample Selection and Data Summary: Erratum , 1989 .

[141]  R. Tully Nearby Galaxies Catalog , 1988 .

[142]  S. Djorgovski,et al.  Fundamental Properties of Elliptical Galaxies , 1987 .

[143]  K. Freeman,et al.  NGC 5266: an elliptical galaxy with a dust ring , 1987 .

[144]  R. Davies,et al.  Spectroscopy and photometry of elliptical galaxies. I: a new distance estimator , 1987 .

[145]  F. Schweizer An optical study of the giant radio galaxy NGC 1316 (Fornax A). , 1980 .

[146]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[147]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[148]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .