Particle swarm with equilibrium strategy of selection for multi-objective optimization

A new ranking scheme based on equilibrium strategy of selection is proposed for multi-objective particle swarm optimization (MOPSO), and the preference ordering is used to identify the "best compromise" in the ranking stage. This scheme increases the selective pressure, especially when the number of objectives is very large. The proposed algorithm has been compared with other multi-objective evolutionary algorithms (MOEAs). The experimental results indicate that our algorithm produces better convergence performance.

[1]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[2]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[3]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[4]  Kay Chen Tan,et al.  A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[6]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[7]  Thomas Hanne,et al.  A multiobjective evolutionary algorithm for approximating the efficient set , 2007, Eur. J. Oper. Res..

[8]  Ko-Hsin Liang,et al.  A new multiobjective evolutionary algorithm , 2002, Eur. J. Oper. Res..

[9]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[10]  Marco Farina,et al.  A fuzzy definition of "optimality" for many-criteria optimization problems , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[11]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[12]  S Djordjević,et al.  Automatic calibration of urban drainage model using a novel multi-objective genetic algorithm. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[13]  Loo Hay Lee,et al.  Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem , 2008, Eur. J. Oper. Res..

[14]  Prospero C. Naval,et al.  An effective use of crowding distance in multiobjective particle swarm optimization , 2005, GECCO '05.

[15]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[16]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[17]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[18]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[19]  Kay Chen Tan,et al.  On solving multiobjective bin packing problems using evolutionary particle swarm optimization , 2008, Eur. J. Oper. Res..

[20]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[21]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[22]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[23]  Hisao Ishibuchi,et al.  An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization , 2008, Eur. J. Oper. Res..

[24]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[25]  Indraneel Das A preference ordering among various Pareto optimal alternatives , 1999 .

[26]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[27]  Kalyanmoy Deb,et al.  Running performance metrics for evolutionary multi-objective optimizations , 2002 .