AN OPTIMAL SAMPLING RULE FOR NONINTRUSIVE POLYNOMIAL CHAOS EXPANSIONS OF EXPENSIVE MODELS

In this work we present the optimized stochastic collocation method (OSC). OSC is a new sampling rule that can be applied to polynomial chaos expansions (PCE) for uncertainty quantification. Given a model function, the goal of PCE is to find the polynomial from a given polynomial space that is closest to the model function with respect to the L2-norm induced by a given probability measure. Many PCE methods approximate the involved projection integral by discretization with a finite set of integration points. Our key idea is to choose these integration points through numerical optimization based on an operator norm derived from the discretized projection operator. OSC is a generalization of Gaussian quadrature: both methods coincide for one-dimensional integration and under appropriate problem settings in multidimensional problems. As opposed to many established integration rules, OSC does not generally lead to tensor grids in multidimensional problems. With OSC, the user can specify the number of integration points independently of the problem dimension and PCE expansion order. This allows one to reduce the number of model evaluations and still achieve a high accuracy. The input parameters can follow any kind of probability distribution, as long as the statistical moments up to a certain order are available. Even statistically dependent parameters can be handled in a straightforward and natural fashion. Moreover, OSC allows reusing integration points, if results from earlier model evaluations are available. Gauss-Kronrod and Stroud integration rules can be reproduced with OSC for the respective special cases.

[1]  A. Brockwell,et al.  Universal Residuals: A Multivariate Transformation. , 2007, Statistics & probability letters.

[2]  Ying Xiong,et al.  Weighted stochastic response surface method considering sample weights , 2011 .

[3]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[4]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[5]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[6]  Sotirios E. Notaris,et al.  Newton’s Method and Gauss-Kronrod Quadrature , 1988 .

[7]  Mort Webster,et al.  Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model , 1996 .

[8]  Sergey Oladyshkin,et al.  Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion , 2012, Reliab. Eng. Syst. Saf..

[9]  Wolfgang Nowak,et al.  Measures of Parameter Uncertainty in Geostatistical Estimation and Geostatistical Optimal Design , 2010 .

[10]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[11]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2010, SIAM Rev..

[12]  R. Ghanem,et al.  Stochastic Finite-Element Analysis of Seismic Soil-Structure Interaction , 2002 .

[13]  R. Grandhi,et al.  Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .

[14]  Dongxiao Zhang,et al.  Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods , 2007 .

[15]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[16]  Holger Class,et al.  Bayesian updating via bootstrap filtering combined with data-driven polynomial chaos expansions: methodology and application to history matching for carbon dioxide storage in geological formations , 2013, Computational Geosciences.

[17]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[18]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[19]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[20]  Walter Gautschi,et al.  Supplement to On Computing Gauss-Kronrod Quadrature Formulae , 1986 .

[21]  H. Matthies,et al.  Numerical Evaluation of Functionals based on Variance Minimisation , 2008 .

[22]  J. Villadsen,et al.  Solution of differential equation models by polynomial approximation , 1978 .

[23]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[24]  Menner A. Tatang,et al.  An efficient method for parametric uncertainty analysis of numerical geophysical models , 1997 .

[25]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[26]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[27]  Bruno Sudret,et al.  Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .

[28]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[29]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[30]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[31]  U. Wever,et al.  Adapted polynomial chaos expansion for failure detection , 2007, J. Comput. Phys..

[32]  S. Isukapalli,et al.  Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems , 1998, Risk analysis : an official publication of the Society for Risk Analysis.

[33]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[34]  A. W. Wymore,et al.  Numerical Evaluation of Multiple Integrals I , 2010 .

[35]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[36]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[37]  Fenfen Xiong,et al.  Efficient Sampling Approaches for Stochastic Response Surface Method , 2012 .

[38]  L. Mathelin,et al.  A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .

[39]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[40]  Peter Jäckel A note on multivariate Gauss-Hermite quadrature , 2005 .

[41]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[42]  Walter Gautschi,et al.  On the computing Gauss-Kronrod Quadrature Formulae , 1986 .

[43]  N. Wiener The Homogeneous Chaos , 1938 .

[44]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[45]  Ronald Cools,et al.  Advances in multidimensional integration , 2002 .

[46]  Jeroen A. S. Witteveen,et al.  Modeling Arbitrary Uncertainties Using Gram-Schmidt Polynomial Chaos , 2006 .

[47]  Rainer Helmig,et al.  A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations , 2011 .

[48]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[49]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[50]  Dongxiao Zhang,et al.  Stochastic analysis of unsaturated flow with probabilistic collocation method , 2009 .

[51]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[52]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[53]  J. Radon,et al.  Zur mechanischen Kubatur , 1948 .

[54]  Zhenshan Cui,et al.  Uncertainty quantification using polynomial chaos expansion with points of monomial cubature rules , 2008 .

[55]  S. Isukapalli UNCERTAINTY ANALYSIS OF TRANSPORT-TRANSFORMATION MODELS , 1999 .

[56]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[57]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .