High-angle-of-attack stability characteristics of a 3-surface fighter configuration

A wind tunnel investigation was conducted to study the low speed, high angle of attack stability characteristics of a three surface fighter concept based on the F-15 configuration. Static force data were measured over angle of attack and side-slip ranges of 0 to 85 and -10 and 10 deg, respectively. A force oscillation technique was used to obtain dynamic derivatives at angles of attack from 0 to 60 deg. The tests were conducted for several canard deflections and with the canards removed to investigate the effects of the close coupled canard on the high angle of attack stability characteristics of the configuration. A fuselage strake was developed which significantly improved static lateral directional stability characteristics at high angles of attack while also increasing the maximum lift of the configuration.