Correlation of CMB with large-scale structure. I. Integrated Sachs-Wolfe tomography and cosmological implications

We cross correlate large-scale structure (LSS) observations from a number of surveys with cosmic microwave background (CMB) anisotropies from the Wilkinson Microwave Anisotropy Probe (WMAP) to investigate the integrated Sachs-Wolfe (ISW) effect as a function of redshift, covering z~0.1–2.5. Our main goal is to go beyond reporting detections towards developing a reliable likelihood analysis that allows one to determine cosmological constraints from ISW observations. With this in mind we spend a considerable amount of effort in determining the redshift-dependent bias and redshift distribution (b(z)×dN/dz) of these samples by matching with spectroscopic observations where available, and analyzing autopower spectra and cross-power spectra between the samples. Because of wide redshift distributions of some of the data sets we do not assume a constant-bias model, in contrast to previous work on this subject. We only use the LSS data sets for which we can extract such information reliably and as a result the data sets we use are 2-Micron All Sky Survey (2MASS) samples, Sloan Digital Sky Survey (SDSS) photometric Luminous Red Galaxies, SDSS photometric quasars, and NRAO VLA Sky Survey (NVSS) radio sources. We make a joint analysis of all samples constructing a full covariance matrix, which we subsequently use for cosmological parameter fitting. We report a 3.7sigma detection of ISW combining all the data sets. We do not find significant evidence for an ISW signal at z>1, in agreement with theoretical expectation in the LambdaCDM model. We combine the ISW likelihood function with weak lensing of CMB (hereafter Paper II [C. M. Hirata, S. Ho, N. Padmanabhan, U. Seljak, and N. A. Bahcall, arXiv:0801.0644.]) and CMB power spectrum to constrain the equation of state of dark energy and the curvature of the Universe. While ISW does not significantly improve the constraints in the simplest six-parameter flat LambdaCDM model, it improves constraints on seven-parameter models with curvature by a factor of 3.2 (relative to WMAP alone) to OmegaK=-0.004-0.020+0.014, and with dark energy equation of state by 15% to w=-1.01-0.40+0.30 [posterior median with “1sigma” (16th–84th percentile) range]. A software package for calculating the ISW likelihood function can be downloaded at http://www.astro.princeton.edu/~shirley/ISW_WL.html.

[1]  Douglas P. Finkbeiner,et al.  A Full-Sky Hα Template for Microwave Foreground Prediction , 2003, astro-ph/0301558.

[2]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[3]  Oxford,et al.  The 2dF QSO Redshift Survey — II. Structure and evolution at high redshift , 2001 .

[4]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[5]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[6]  David Schlegel,et al.  Correlating the CMB with luminous red galaxies: The Integrated Sachs-Wolfe effect , 2005 .

[7]  Cross-Correlating the Sloan Digital Sky Survey with the Microwave Sky , 2000, astro-ph/0001393.

[8]  E. Boldt,et al.  The cosmic X-ray background , 1979 .

[9]  Oxford,et al.  The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.

[10]  Pablo Fosalba,et al.  Error analysis in cross‐correlation of sky maps: application to the Integrated Sachs–Wolfe detection , 2007, astro-ph/0701393.

[11]  J. Mohr,et al.  K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light , 2004, astro-ph/0408557.

[12]  Ofer Lahav,et al.  Cross-correlation of 2MASS and WMAP 3: implications for the integrated Sachs–Wolfe effect , 2007 .

[13]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[14]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[15]  J. Dunlop,et al.  The redshift cut-off in the luminosity function of radio galaxies and quasars. , 1990 .

[16]  U. Seljak Weak Lensing Reconstruction and Power Spectrum Estimation: Minimum Variance Methods , 1997, astro-ph/9711124.

[17]  H. Payne,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[18]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[19]  Mining weak lensing surveys , 2002, astro-ph/0210478.

[20]  M. Giavalisco,et al.  Photometric redshifts of galaxies in COSMOS , 2006 .

[21]  R. Sachs,et al.  Perturbations of a Cosmological Model and Angular Variations of the Microwave Background , 1967 .

[22]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, astro-ph/0305097.

[23]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[24]  Cosmological parameters from combining the Lyman-α forest with CMB, galaxy clustering and SN constraints , 2006, astro-ph/0604335.

[25]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions , 2003, astro-ph/0302214.

[26]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[27]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[28]  M. Strauss,et al.  Cross - correlation of the Cosmic Microwave Background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources , 2003, astro-ph/0308260.

[29]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[30]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[31]  Garth D. Illingworth,et al.  The Hubble Space Telescope Extragalactic Distance Scale Key Project. 1: The discovery of Cepheids and a new distance to M81 , 1994 .

[32]  M. Skrutskie,et al.  2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.

[33]  Domenico Marinucci,et al.  Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy , 2006 .

[34]  H. Peiris,et al.  Cosmological constraints on f(R) acceleration models , 2007, 0706.2399.

[35]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[36]  N. G. Turok,et al.  Correlations Between the Cosmic X-ray and Microwave Backgrounds: Constraints on a Cosmological Constant , 1998 .

[37]  A. Lasenby,et al.  The Quest for Microwave Foreground X , 2003, astro-ph/0312039.

[38]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[39]  Chris Blake,et al.  Measurement of the angular correlation function of radio galaxies from the NRAO VLA Sky Survey , 2002 .

[40]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[41]  B. Yanny,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006 .

[42]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[43]  Alexander G. Gray,et al.  EFFICIENT PHOTOMETRIC SELECTION OF QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. II. ∼1, 000, 000 QUASARS FROM DATA RELEASE 6 , 2004, The Astrophysical Journal Supplement Series.

[44]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[45]  Caltech,et al.  The VLA-COSMOS Survey. II. Source Catalog of the Large Project , 2006, astro-ph/0612314.

[46]  Ya. B. Zel'Dovich,et al.  Microwave background radiation as a probe of the contemporary structure and history of the universe , 1980 .

[47]  Robert C. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[48]  F. Miller Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001 .

[49]  Edward J. Wollack,et al.  Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization, and Systematic Error Limits , 2006, astro-ph/0603452.

[50]  P. Vielva,et al.  Cross-correlation of the cosmic microwave background and radio galaxies in real, harmonic and wavelet spaces: detection of the integrated Sachs–Wolfe effect and dark energy constraints , 2004 .

[51]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[52]  Clustering of High Redshift (Z >= 2.9) Quasars from the Sloan Digital Sky Survey , 2007, astro-ph/0702214.

[53]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[54]  Alexander S. Szalay,et al.  Calibrating photometric redshifts of luminous red galaxies , 2005 .

[55]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[56]  S. Boughn,et al.  The Large-Scale Bias of the Hard X-Ray Background , 2004, astro-ph/0404348.

[57]  A. Myers,et al.  The 2dF-SDSS LRG and QSO (2SLAQ) survey: the z < 2.1 quasar luminosity function from 5645 quasars to g=21.85 , 2005, astro-ph/0504300.

[58]  Integrated Sachs-Wolfe effect: Large scale structure correlation , 2001, astro-ph/0112408.

[59]  Cross-correlation of CMB with large-scale structure: Weak gravitational lensing , 2004, astro-ph/0406004.

[60]  M. Raddick,et al.  The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.

[61]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey - XIV. Structure and evolution from the two-point correlation function , 2005 .

[62]  R. J. Brunner,et al.  The 2dF-SDSS LRG and QSO (2SLAQ) luminous red galaxy survey , 2006, astro-ph/0607631.

[63]  Alexander G. Gray,et al.  High redshift detection of the integrated Sachs-Wolfe effect , 2006 .

[64]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[65]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[66]  Alexander G. Gray,et al.  First Measurement of the Clustering Evolution of Photometrically Classified Quasars , 2005, astro-ph/0510371.

[67]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003 .

[68]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[69]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[70]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[71]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[72]  Robert Crittenden,et al.  A correlation between the cosmic microwave background and large-scale structure in the Universe , 2004, Nature.

[73]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[74]  Y. Zel’dovich,et al.  The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .

[75]  C. Skordis,et al.  Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation , 2005 .

[76]  F. Hoyle,et al.  Origin of Cosmic Rays , 1948, Nature.

[77]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[78]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[79]  Enrique Gaztañaga,et al.  New light on Dark Cosmos , 2006 .

[80]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[81]  Pablo Fosalba,et al.  Measurement of the gravitational potential evolution from the cross‐correlation between WMAP and the APM Galaxy Survey , 2003, astro-ph/0305468.

[82]  George Efstathiou,et al.  Galaxy correlations on large scales , 1990 .